分析:首先由性质:a2+b2≥2ab,即可求得3(a2+b2+c2+d2)≥2ab+2ac+2ad+2bc+2bd+2cd,又由3(a2+b2+c2+d2)≥0与a2+b2+c2+d2=10,即可求得2ab+2ac+2ad+2bc+2bd+2cd的取值范围,计算出y的值,则可求得y的最大值.
解答:解:∵a2+b2+c2+d2=10,
又∵a2+b2≥2ab,a2+c2≥2ac,a2+d2≥2ad,b2+c2≥2bc,b2+d2≥2bd,c2+d2≥2cd,
以上等式相加得3(a2+b2+c2+d2)≥0,
3(a2+b2+c2+d2)≥2ab+2ac+2ad+2bc+2bd+2cd,
∴0≤2ab+2ac+2ad+2bc+2bd+2cd≤3×10=30,
∴y=(a-b)2+(a-c)2+(a-d)2+(b-c)2+(b-d)2+(c-d)2,
=a2+b2-2ab+a2+c2-2ac+b2+c2-2bc+b2+d2-2bd+c2+d2-2cd,
=3(a2+b2+c2+d2)-2ab-2ac-2ad-2bc-2bd-2cd,
=30-(2ab+2ac+2ad+2bc+2bd+2cd)≥30-0=30.
故答案为:30.
点评:此题考查了函数最值问题.注意a2+b2≥2ab性质的应用,还要注意整体思想的应用.