精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD边AB在x轴上,且坐标分别为A(1,0),B(-1,0),若抛物线经过A,B两点,将正方形绕A点顺时针旋转30°后D点转到D′位置,且D′在抛物线上,则抛物线的解析式为________.

y=(x+1)(x-1)(或y=x2-
分析:如图,过点D′作D′E⊥x轴于点E.根据旋转的性质推知直角△AED′中的AD′=2,∠D′AE=60°,通过解该直角三角形即可求得AE、D′E的长度,从而求得点D′的坐标,然后将其代入二次函数解析式y=a(x+1)(x-1)(a≠0),从而求得a的值.
解答:解:根据题意,可设该二次函数解析式为y=a(x+1)(x-1)(a≠0),
如图,过点D′作D′E⊥x轴于点E.
∵A(1,0),B(-1,0),
∴AB=2.
∵四边形ABCD是正方形,
∴AB=AD=2,∠DAB=90°.
又∵由旋转的性质知,∠DAD′=30°,AD=AD′=2,
∴在直角△AED′中,AE=AD′cos60°=2×=1,D′E=AD′sin60°=2×=
∴D′(2,).
∵点D′在抛物线上,
=a(2+1)(2-1),
解得,a=
∴该二次函数解析式是:y=(x+1)(x-1)(或y=x2-).
故答案是:y=(x+1)(x-1)(或y=x2-).
点评:本题综合考查了旋转的性质,点的坐标与图形的性质,解直角三角形以及待定系数法求二次函数解析式.在求点D′的坐标时,也可以在直角△AED′中利用“勾股定理、30°角所对的直角边是所对的斜边的一半”进行解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案