精英家教网 > 初中数学 > 题目详情

一元二次方程x2+x﹣2=0根的情况是(  )

 

A.

有两个不相等的实数根

B.

有两个相等的实数根

 

C.

无实数根

D.

无法确定

考点:

根的判别式.

分析:

判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.

解答:

解:∵a=1,b=1,c=﹣2,

∴△=b2﹣4ac=1+8=9>0

∴方程有两个不相等的实数根.

故选A

点评:

本题考查了一元二次方程根的判别式的应用.

总结:一元二次方程根的情况与判别式△的关系:

(1)△>0⇔方程有两个不相等的实数根;

(2)△=0⇔方程有两个相等的实数根;

(3)△<0⇔方程没有实数根.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

从甲、乙两题中选做一题,如果两题都做,只以甲题计分.
甲题:若关于x的一元二次方程x2-2(2-k)x+k2+12=0有实数根α、β.
(1)求实数k的取值范围;
(2)设t=
α+βk
,求t的最小值.
乙题:如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.当点O运动到何处时,四边形AECF是矩形?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次方程x2+(2m-1)x+m2=0有两个实数根x1和x2
(1)求实数m的取值范围;
(2)当x12+x22=7时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

一元二次方程x2-3x+1=0的两根为x1、x2,则x1+x2-x1•x2=
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•常德)若一元二次方程x2+2x+m=0有实数解,则m的取值范围是(  )

查看答案和解析>>

同步练习册答案