精英家教网 > 初中数学 > 题目详情
精英家教网已知直线AB经过⊙O上的点C,且OA=OB,CA=CB.
(1)直线AB是⊙O的切线吗?请说明理由;
(2)若⊙O的直径为8cm,AB=10cm,求OA的长.(结果保留根号)
分析:(1)直线AB是⊙O的切线,连接OC,然后利用等腰三角形的性质即可证明OC⊥AB,接着利用切线的判定定理即可求解;
(2)根据切线的性质得到△OAC是直角三角形,同时C是AB的中点,然后利用勾股定理计算即可求解.
解答:精英家教网解:(1)直线AB是⊙O的切线.理由如下:
如图,连接OC,
∵OA=OB,CA=CB,
∴OC⊥AB于C,
∴直线AB是⊙O的切线;

(2)∵OA=OB,CA=CB,
而⊙O的直径为8cm,AB=10cm
∴OC=4,AC=5,
∴AO=
OC2+AC2
=
41
cm.
点评:此题主要考查了切线的性质与判定,首先利用切线的判定定理证明切线,然后利用切线的性质和勾股定理计算即可求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知直线AB经过点A(0,5),B(2,0),若将这条直线向左平移,恰好过坐标原点,则平移后的直线解析式为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB,那么直线AB是⊙O的切线吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线AB经过点C(1,2),与x轴、y轴分别交于A点、B点,CD⊥x轴于D,CE⊥y轴于E,CF与x轴交于F.
(1)当直线AB绕点C旋转到使△ACD≌△CBE时,求直线A8的解析式;
(2)若S四边形ODCE=S△CFD,当直线AB绕点C旋转到使FC⊥AB时,求BC的长;
(3)在(2)成立的情况下,将△FOG沿y轴对折得到△F′O′G′(F、0、G的对应点分别为F′、O′、G′),把△F′O′G′沿x轴正方向平移到使得点F′与点A重合,设在平移过程中△F′O′G′与四边形CDOE重叠的面积为y,OO′的长为x,求y与x的函数关系式及自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2005-2006学年北京市海淀区上地实验中学九年级(上)期末数学试卷(解析版) 题型:解答题

如图,已知直线AB经过点C(1,2),与x轴、y轴分别交于A点、B点,CD⊥x轴于D,CE⊥y轴于E,CF与x轴交于F.
(1)当直线AB绕点C旋转到使△ACD≌△CBE时,求直线A8的解析式;
(2)若S四边形ODCE=S△CFD,当直线AB绕点C旋转到使FC⊥AB时,求BC的长;
(3)在(2)成立的情况下,将△FOG沿y轴对折得到△F′O′G′(F、0、G的对应点分别为F′、O′、G′),把△F′O′G′沿x轴正方向平移到使得点F′与点A重合,设在平移过程中△F′O′G′与四边形CDOE重叠的面积为y,OO′的长为x,求y与x的函数关系式及自变量x的取值范围.

查看答案和解析>>

同步练习册答案