精英家教网 > 初中数学 > 题目详情
1
2
+(
1
3
+
2
3
)+(
1
4
+
2
4
+
3
4
)+(
1
5
+
2
5
+
3
5
+
4
5
)+…+(
1
50
+
2
50
+…+
48
50
+
49
50
)
=
 
分析:仔细观察,知原式还可以是
1
2
+(
2
3
+
1
3
)+(
3
4
+
2
4
+
1
4
)+(
4
5
+
3
5
+
2
5
+
1
5
)+(
49
50
+
48
50
++
1
50
)
.又
1
2
+
1
2
=1,(
2
3
+
1
3
)+(
1
3
+
2
3
)=2,(
1
4
+
2
4
+
3
4
)
+(
3
4
+
2
4
+
1
4
)
=3,…依此类推可知,将原式倒过来后再与原式相加,问题就转化为
1+2+3+…+50
2
解答:解:设s=
1
2
+(
1
3
+
2
3
)+(
1
4
+
2
4
+
3
4
)+(
1
5
+
2
5
+
3
5
+
4
5
)+…+(
1
50
+
2
50
+…+
48
50
+
49
50
)
,①
又s=
1
2
+(
2
3
+
1
3
)+(
3
4
+
2
4
+
1
4
)+(
4
5
+
3
5
+
2
5
+
1
5
)+(
49
50
+
48
50
++
1
50
)
,②
①+②,得
2s=1+2+3+4+…+49,③
2s=49+48+47+…+2+1,④
③+④,得
4s=50×49=2450,故s=612.5;
故答案为:612.5.
点评:本题主要考查了有理数的混合运算.解答此题时,采用了“倒序相加法”,该方法在解答此类的数列时,会经常用到.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

研究下列算式,你会发现有什么规律?
①13=12
②13+23=32
③13+23+33=62
④13+23+33+43=102
⑤13+23+33+43+53=152
(1)根据以上算式的规律,请你写出第⑥算式;
(2)用含n(n为正整数)的式子表示第n个算式;
(3)请用上述规律计算:63+73+83+…+203

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•金平区模拟)研究下列算式,你会发现有什么规律?
①13=12
②13+23=32
③13+23+33=62
④13+23+33+43=102
⑤13+23+33+43+53=152
(1)根据以上算式的规律,请你写出第⑥个算式;
(2)用含n(n为正整数)的式子表示第n个算式;
(3)请用上述规律计算:73+83+93+…+203

查看答案和解析>>

科目:初中数学 来源: 题型:

观察算式:
1
1×2
=1
-
1
2
=
1
2

1
1×2
+
1
2×3
=1
-
1
2
+
1
2
-
1
3
=
2
3

1
1×2
+
1
2×3
+
1
3×4
=1
-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4


(1)按规律填空:
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=
4
5
4
5

1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=
99
100
99
100

③如果n为正整数,那么
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
n×(n+1)
=
n
n+1
n
n+1

(2)计算(由此拓展写出具体过程):
1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101

②1-
1
2
-
1
6
-
1
12
-…-
1
9900

查看答案和解析>>

科目:初中数学 来源: 题型:

观察算式:
1
1×2
=1-
1
2
=
1
2

1
1×2
+
1
2×3
=1-
1
2
+
1
2
-
1
3
=
2
3
 
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4

按规律填空
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=
4
5
4
5

1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=
99
100
99
100

如果n为正整数,那么
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
n×(n+1)
=
n
n+1
n
n+1

由此拓展写出具体过程,
1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101
=

查看答案和解析>>

同步练习册答案