【题目】如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).
(1)求直线AB的解析式;
(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.
【答案】(1)、y=2x-2;(2)、(2,2).
【解析】
试题分析:(1)、设直线AB的解析式为y=kx+b,将点A(1,0)、点B(0,﹣2)分别代入解析式即可组成方程组,从而得到AB的解析式;(2)、设点C的坐标为(x,y),根据三角形面积公式以及S△BOC=2求出C的横坐标,再代入直线即可求出y的值,从而得到其坐标.
试题解析:(1)设直线AB的解析式为y=kx+b(k≠0), ∵直线AB过点A(1,0)、点B(0,﹣2),
∴, 解得, ∴直线AB的解析式为y=2x﹣2.
(2)设点C的坐标为(x,y), ∵S△BOC=2, ∴2x=2, 解得x=2, ∴y=2×2﹣2=2,
∴点C的坐标是(2,2).
科目:初中数学 来源: 题型:
【题目】某种商品原售价200元,由于产品换代,现连续两次降价处理,按72元的售价销售.已知两次降价的百分率相同,若设降价的百分率为x,则可列出方程为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解我市 20000 名考生的中考数学成绩,从中抽出 200 名考生的数学成绩进行调查,抽出的 200 名考生的数学成绩是( )
A. 总体 B. 样本 C. 个体 D. 样本容量
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对称轴为直线x=-1的抛物线y=x2+bx+c与x轴相交于A、B两点,与y轴的交于C点,其中A点的坐标为(-3,0).
(1)求抛物线的表达式;
(2)若将此抛物线向右平移m个单位,A、B、C三点在坐标轴上的位置也相应的发生移动,在移动过程中,△BOC能否成为等腰直角三角形?若能,求出m的值,若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com