分析 (1)根据折叠得出AD=AD1=2,PD=PD1=x,∠D=∠AD1P=90°,在Rt△ABC中,根据勾股定理求出AC,在Rt△PCD1中,根据勾股定理得出方程,求出即可;
(2)连接PE,求出BE=CE=1,在Rt△ABE中,根据勾股定理求出AE,求出AD1=AD=2,PD=PD1=x,D1E=$\sqrt{10}$-2,PC=3-x,在Rt△PD1E和Rt△PCE中,根据勾股定理得出方程,求出即可;
(3)分为两种情况:当0<x≤2时,y=x;当2<x≤3时,点D1在矩形ABCD的外部,PD1交AB于F,求出AF=PF,作PG⊥AB于G,设PF=AF=a,在Rt△PFG中,由勾股定理得出方程(x-a)2+22=a2,求出a即可.
解答 解:(1)![]()
如图1,∵由题意得:△ADP≌△AD1P,
∴AD=AD1=2,PD=PD1=x,∠D=∠AD1P=90°,
∵直线AD1过C,
∴PD1⊥AC,
在Rt△ABC中,AC=$\sqrt{{2}^{2}+{3}^{2}}$=$\sqrt{13}$,CD1=$\sqrt{13}$-2,
在Rt△PCD1中,PC2=PD12+CD12,
即(3-x)2=x2+($\sqrt{13}$-2)2,
解得:x=$\frac{2\sqrt{13}-4}{3}$,
∴当x=$\frac{2\sqrt{13}-4}{3}$时,直线AD1过点C;
(2)如图2,![]()
连接PE,
∵E为BC的中点,
∴BE=CE=1,
在Rt△ABE中,AE=$\sqrt{A{B}^{2}+B{E}^{2}}$=$\sqrt{10}$,
∵AD1=AD=2,PD=PD1=x,
∴D1E=$\sqrt{10}$-2,PC=3-x,
在Rt△PD1E和Rt△PCE中,
x2+($\sqrt{10}$-2)2=(3-x)2+12,
解得:x=$\frac{2\sqrt{10}-2}{3}$,
∴当x=$\frac{2\sqrt{10}-2}{3}$时,直线AD1过BC的中点E;
(3)如图3,![]()
当0<x≤2时,y=x,
如图4,![]()
当2<x≤3时,点D1在矩形ABCD的外部,PD1交AB于F,
∵AB∥CD,
∴∠1=∠2,
∵∠1=∠3(根据折叠),
∴∠2=∠3,
∴AF=PF,
作PG⊥AB于G,
设PF=AF=a,
由题意得:AG=DP=x,FG=x-a,
在Rt△PFG中,由勾股定理得:(x-a)2+22=a2,
解得:a=$\frac{4+{x}^{2}}{2x}$,
所以y=$\frac{1}{2}×2×\frac{4+{x}^{2}}{2x}$=$\frac{{x}^{2}+4}{2x}$,
综合上述,当0<x≤2时,y=x;当2<x≤3时,y=$\frac{{x}^{2}+4}{2x}$.
点评 本题考查了勾股定理,折叠的性质,矩形的性质等知识点,能综合运用知识点进行推理和计算是解此题的关键,用了分类推理思想.
科目:初中数学 来源: 题型:选择题
| x | -1 | 0 | 1 | 3 |
| y | -3 | 1 | 3 | 1 |
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 3x2+4x2=7x4 | B. | 2x3•3x3=6x3 | C. | a÷a-2=a3 | D. | (-$\frac{1}{2}$a2b)3=-$\frac{1}{6}$a6b3 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 12,14 | B. | 12,15 | C. | 15,14 | D. | 15,13 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com