精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD是等腰梯形,AD∥BC,BC=2,以线段BC的中点O为圆心,以OB为半径作圆,连结OA交⊙O于点M
(1)若∠ABO=120°,AO是∠BAD的平分线,求
BM
的长;
(2)若点E是线段AD的中点,AE=
3
,OA=2,求证:直线AD与⊙O相切.
分析:(1)求出AB=BO,求出∠AOB,根据弧长公式求出即可;
(2)连接OD,OE,证出AO=OD,根据等腰三角形性质求出OE⊥暗淡,QIUC OE=OB,根据切线的判定推出即可.
解答:(1)解:∵AD∥BC,
∴∠EAO=∠AOB,
∵AO是∠BAD的平分线,
∴∠EAO=∠BAO,
∴∠BAO=∠AOB,
∵∠ABC=120°,BC=2,O是BC的中点,
∴∠AOB=∠BAO=30°,OA=OB=1,
BM
的长是
30π×1
180
=
1
6
π;

(2)
证明:连接OD和OE,
∵四边形ABCD是等腰梯形,
∴∠ABO=∠DCO,
∵O为BC中点,
∴BO=CO,
∵在△ABO和△DCO中
AB=DC
∠ABO=∠DCO
BO=CO

∴△ABO≌△DCO(SAS),
∴AO=OD,
∵E为AD中点,
∴OE⊥AD,
在Rt△AEO中,AE=
3
,AO=2,由勾股定理得:OE=1=BO,
即OE为半径,OE⊥AD,
∴直线AD与⊙O相切.
点评:本题考查了切线的判定,弧长公式,全等三角形的性质和判定,等腰三角形的性质,平行线的性质,等腰三角形的判定等知识点的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案