精英家教网 > 初中数学 > 题目详情
如果两圆的半径分别为1和2,圆心距为3,那么它们的一条外公切线长是
 
分析:连接O1C,O2D,作O2F⊥O1C,因为AB,CD公切线,所以AD=AE=AC,即求得AB=CD=FO2
解答:精英家教网解:连接O1C,O2D,作O2F⊥O1C,
则∠1=∠2=∠CFO2=90°,
所以四边形CFO2D是矩形,
则CD=FO2
由勾股定理得:
FO22=O1O22-O1F2
代入得:FO22=(1+2)2-(2-1)2
即FO2=
8

因为AB,CD为公切线,
所以AD=AE=AC,
因为有对称性可知AE=BE,
所以AB=CD=FO2=
8

故答案为:
8
点评:本题考查了相切圆的性质,从图形出发,因为AB,CD为公切线,所以AB=CD=FO2
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

3、如果两圆的半径分别为4和6,圆心距为10,那么这两圆的位置关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

3、如果两圆的半径分别为2和1,圆心距为3,那么能反映这两圆位置关系的图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如果两圆的半径分别为3和4,圆心距为2
7
,则两圆的位置关系为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如果两圆的半径分别为2和5,且圆心距等于7,那么这两圆的位置关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2006•静安区二模)如果两圆的半径分别为3和4,圆心距为5,那么这两个圆的位置关系是(  )

查看答案和解析>>

同步练习册答案