精英家教网 > 初中数学 > 题目详情

如图,弧EF所在的⊙O的半径长为5,正三角形ABC的顶点A、B分别在半径OE、OF上,点C在弧EF上,∠EOF=60°,如果AB⊥OF,那么这个正三角形的边长为________.


分析:过C作CM⊥AB于M,连接OC,设正三角形ABC的边长是x,则MB=AB=x,由勾股定理求出CM=x,根据勾股定理求出OA2=25-x2,在Rt△ABO中,OA==,得出方程25-x2=,求出即可.
解答:
过C作CM⊥AB于M,连接OC,
设正三角形ABC的边长是x,
则MB=AB=x,∠BAC=60°,
由勾股定理得:CM=x,
∵∠EOF=∠CAB=60°,AB⊥OF,
∴∠OAB=30°,∠OBA=90°,
∴OA2=OC2-AC2=25-x2
在Rt△ABO中,OA==
OA2=
25-x2=
x=
故答案为:
点评:本题考查了等边三角形性质,勾股定理,解直角三角形等知识点的应用,解此题的关键是能得出关于x的方程.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

小平所在的学习小组发现,车辆转弯时,能否顺利通过直角弯道的标准是,车辆是否可以行驶到和路的边界夹角是45°的位置(如图1中=2\×GB3 ②的位置).例如,图2是某巷子的俯视图,巷子路面宽4m,转弯处为直角,车辆的车身为矩形ABCD,CD与DE、CE的夹角都是45°时,连接EF,交CD于点G,若GF的长度至少能达到车身宽度,即车辆能通过.
(1)小平认为长8m,宽3m的消防车不能通过该直角转弯,请你帮他说明理由;
(2)小平提出将拐弯处改为圆弧(
MM′
NN′
是以O为圆心,分别以OM和ON为半径的弧),长8m,宽3m的消防车就可以通过该弯道了,具体的方案如图3,其中OM⊥OM′,你能帮小平算出,ON至少为多少时,这种消防车可以通过该巷子?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•嘉定区一模)如图,弧EF所在的⊙O的半径长为5,正三角形ABC的顶点A、B分别在半径OE、OF上,点C在弧EF上,∠EOF=60°,如果AB⊥OF,那么这个正三角形的边长为
5
21
7
5
21
7

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠B=90°,AB=1,BC=
12
,以点C为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E.
(1)求AE的长度;
(2)分别以点A、E为圆心,AB长为半径画弧,两弧交于点F(F与C在AB两侧),连接AF、EF,设EF交弧DE所在的圆于点G,连接AG,
①求证:△AEG∽△FEA;
②试猜想∠EAG的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年上海市嘉定区中考数学一模试卷(解析版) 题型:填空题

如图,弧EF所在的⊙O的半径长为5,正三角形ABC的顶点A、B分别在半径OE、OF上,点C在弧EF上,∠EOF=60°,如果AB⊥OF,那么这个正三角形的边长为   

查看答案和解析>>

同步练习册答案