精英家教网 > 初中数学 > 题目详情
(2003•安徽)附加题:
如图,在五边形A1A2A3A4A5中,B1是A1对边A3A4的中点,连接A1B1,我们称A1B1是这个五边形的一条中对线.如果五边形的每条中对线都将五边形的面积分成相等的两部分.求证:五边形的每条边都有一条对角线和它平行.

【答案】分析:可以再做五边形的一条中对线,根据它们分割成的两部分的面积相等,都是五边形的面积的一半,导出两个等底的三角形的面积相等,从而得到它们的高相等,则得到五边形的每条边都有一条对角线和它平行.
解答:证明:取A1A5中点B3,连接A3B3、A1A3、A1A4、A3A5
∵A3B1=B1A4
∴S△A1A3B1=S△A1B1A4
又∵四边形A1A2A3B1与四边形A1B1A4A5的面积相等,
∴S△A1A2A3=S△A1A4A5
同理S△A1A2A3=S△A3A4A5
∴S△A1A4A5=S△A3A4A5
∴△A3A4A5与△A1A4A5边A4A5上的高相等,
∴A1A3∥A4A5
同理可证A1A2∥A3A5,A2A3∥A1A4,A3A4∥A2A5,A5A1∥A2A4
点评:此题要能够根据面积相等得到两条直线间的距离相等,从而证明两条直线平行.
练习册系列答案
相关习题

科目:初中数学 来源:2002年安徽省中考数学试卷(解析版) 题型:解答题

(2002•安徽)附加题:求直线y=3-x与圆x2+y2=5的交点的坐标.(华东版教材实验区试题)

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《命题与证明》(01)(解析版) 题型:解答题

(2003•安徽)附加题:
要将29个数学竞赛的名额分配给10所学校,每所学校至少要分到一个名额.
(1)试提出一种分配方案,使得分到相同名额的学校少于4所;
(2)证明:不管怎样分配,至少有3所学校得到的名额相同;
(3)证明:如果分到相同名额的学校少于4所,则29名选手至少有5名来自同一学校.

查看答案和解析>>

科目:初中数学 来源:2003年安徽省中考数学试卷(解析版) 题型:解答题

(2003•安徽)附加题:
如图,在五边形A1A2A3A4A5中,B1是A1对边A3A4的中点,连接A1B1,我们称A1B1是这个五边形的一条中对线.如果五边形的每条中对线都将五边形的面积分成相等的两部分.求证:五边形的每条边都有一条对角线和它平行.

查看答案和解析>>

科目:初中数学 来源:2003年安徽省中考数学试卷(解析版) 题型:解答题

(2003•安徽)附加题:
要将29个数学竞赛的名额分配给10所学校,每所学校至少要分到一个名额.
(1)试提出一种分配方案,使得分到相同名额的学校少于4所;
(2)证明:不管怎样分配,至少有3所学校得到的名额相同;
(3)证明:如果分到相同名额的学校少于4所,则29名选手至少有5名来自同一学校.

查看答案和解析>>

同步练习册答案