精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.

(1)求二次函数y=ax2+bx+c的表达式;
(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;
(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.

【答案】
(1)

解:设抛物线解析式为y=a(x﹣2)2+9,

∵抛物线与y轴交于点A(0,5),

∴4a+9=5,

∴a=﹣1,

y=﹣(x﹣2)2+9=﹣x2+4x+5


(2)

解:当y=0时,﹣x2+4x+5=0,

∴x1=﹣1,x2=5,

∴E(﹣1,0),B(5,0),

设直线AB的解析式为y=mx+n,

∵A(0,5),B(5,0),

∴m=﹣1,n=5,

∴直线AB的解析式为y=﹣x+5;

设P(x,﹣x2+4x+5),

∴D(x,﹣x+5),

∴PD=﹣x2+4x+5+x﹣5=﹣x2+5x,

∵AC=4,

∴S四边形APCD= ×AC×PD=2(﹣x2+5x)=﹣2x2+10x,

∴当x=﹣ = 时,

∴即:点P( )时,S四边形APCD最大=


(3)

解:如图,

过M作MH垂直于对称轴,垂足为H,

∵MN∥AE,MN=AE,

∴△HMN≌△AOE,

∴HM=OE=1,

∴M点的横坐标为x=3或x=1,

当x=1时,M点纵坐标为8,

当x=3时,M点纵坐标为8,

∴M点的坐标为M1(1,8)或M2(3,8),

∵A(0,5),E(﹣1,0),

∴直线AE解析式为y=5x+5,

∵MN∥AE,

∴MN的解析式为y=5x+b,

∵点N在抛物线对称轴x=2上,

∴N(2,10+b),

∵AE2=OA2+OE2=26

∵MN=AE

∴MN2=AE2

∴MN2=(2﹣1)2+[8﹣(10+b)]2=1+(b+2)2

∵M点的坐标为M1(1,8)或M2(3,8),

∴点M1,M2关于抛物线对称轴x=2对称,

∵点N在抛物线对称轴上,

∴M1N=M2N,

∴1+(b+2)2=26,

∴b=3,或b=﹣7,

∴10+b=13或10+b=3

∴当M点的坐标为(1,8)时,N点坐标为(2,13),

当M点的坐标为(3,8)时,N点坐标为(2,3)


【解析】(1)设出抛物线解析式,用待定系数法求解即可;(2)先求出直线AB解析式,设出点P坐标(x,﹣x2+4x+5),建立函数关系式S四边形APCD=﹣2x2+10x,根据二次函数求出极值;(3)先判断出△HMN≌△AOE,求出M点的横坐标,从而求出点M,N的坐标.
【考点精析】解答此题的关键在于理解二次函数的图象的相关知识,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点,以及对二次函数的性质的理解,了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足 ,连接AF并延长交⊙O于点E,连接AD、DE,若CF=3,AF=4.
(1)求证:△ADF∽△AED;
(2)求FG的长;
(3)求tan∠E的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC在平面直角坐标系中的位置如图所示.

(1)作出△ABC关于y轴对称的△ABlCl

(2)点P在x轴上,且点P到点B与点C的距离之和最小,直接写出点P的坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是矩形,点E在CD边上,点F在DC延长线上,AE=BF.

(1)求证:四边形ABFE是平行四边形;

(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

问题:如图1,在平行四边形ABCD中,EAD上一点,AE=AB,EAB=60°,过点E作直线EF,在EF上取一点G,使得∠EGB=EAB,连接AG.

求证:EG =AG+BG.

小明同学的思路是:作∠GAH=EABGE于点H,构造全等三角形,经过推理解决问题.

参考小明同学的思路,探究并解决下列问题:

(1)完成上面问题中的证明;

(2)如果将原问题中的EAB=60°”改为EAB=90°”,原问题中的其它条件不变(如图2),请探究线段EG、AG、BG之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠ABC=90°,AB=BC=2 ,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为(
A.2
B.
C.
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图四边形ABCD中,AD=DC,∠DAB=∠ACB=90°,过点D作DF⊥AC,垂足为F.DF与AB相交于E.设AB=15,BC=9,P是射线DF上的动点.当△BCP的周长最小时,DP的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD和正方形DEFG的顶点在y轴上,顶点D,F在x轴上,点C在DE边上,反比例函数y= (k≠0)的图象经过B,C和边EF的中点M,若S四边形ABCD=8,则正方形DEFG的面积是( )

A.
B.
C.16
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.
(1)求证:∠1=∠F.
(2)若sinB= ,EF=2 ,求CD的长.

查看答案和解析>>

同步练习册答案