精英家教网 > 初中数学 > 题目详情
(2008•南平)如图,平面直角坐标系中有一矩形纸片OABC,O为原点,点A,C分别在x轴,y轴上,点B坐标为(m,)(其中m>0),在BC边上选取适当的点E和点F,将△OCE沿OE翻折,得到△OGE;再将△ABF沿AF翻折,恰好使点B与点G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求过点O,G,A的抛物线的解析式和对称轴;
(3)在抛物线的对称轴上是否存在点P,使得△OPG是等腰三角形?若不存在,请说明理由;若存在,直接答出所有满足条件的点P的坐标(不要求写出求解过程).

【答案】分析:(1)根据折叠的性质可知:AB=AG=OG=,而OA=BC=m,那么在直角三角形OGA中即可用勾股定理求出m的值.
(2)由于△OGA是个等腰直角三角形,已知了OA的长,因此不难求出G点的坐标,根据O,A,G三点的坐标即可用待定系数法求出抛物线的解析式.
(3)本题要分情况进行讨论:
①当OP=PG,那么P点为OG的垂直平分线与抛物线对称轴的交点.因此P与H重合,P点坐标为(1,0)
②当OP=OG,那么△OPG为等腰直角三角形因此GH=PH=1,P点坐标为(1,-1).
③当GP=OG时,GP=,因此P点的坐标为(1,1+),(1,1-).(在G点上下各有一点)

解答:解:(1)解法一:∵B(m,),
由题意可知AG=AB=,OG=OC=,OA=m(2分)
∵∠OGA=90°,
∴OG2+AG2=OA2
∴2+2=m2
又∵m>0,
∴m=2.
解法二:∵B(m,),
由题意可知AG=AB=,OG=OC=,OA=m
∵∠OGA=90°,
∴∠GOA=∠GAO=45°
∴m=OA==2.

(2)解法一:过G作直线GH⊥x轴于H,
则OH=1,HG=1,故G(1,1).
又由(1)知A(2,0),
设过O,G,A三点的抛物线解析式为y=ax2+bx+c
∵抛物线过原点,
∴c=0.
又∵抛物线过G,A两点,

解得
∴所求抛物线为y=-x2+2x,
它的对称轴为x=1.
解法二:过G作直线GH⊥x轴于H,
则OH=1,HG=1,故G(1,1).
又由(1)知A(2,0),
∴点A,O关于直线l对称,
∴点G为抛物线的顶点.
于是可设过O,G,A三点的抛物线解析式为y=a(x-1)2+1,
∵抛物线过点O(0,0),
∴0=a(0-1)2+1,
解得a=-1,
∴所求抛物线为y=(-1)(x-1)2+1=-x2+2x
它的对称轴为x=1.

(3)答:存在
满足条件的点P有(1,0),(1,-1),(1,1-),(1,1+).
点评:本题着重考查了待定系数法求二次函数解析式、图形翻折变换、三角形全等等知识点,综合性较强,考查学生分类讨论,数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源:2009年浙江省绍兴市绍兴县兰亭镇中数学中考模拟试卷(解析版) 题型:解答题

(2008•南平)如图,平面直角坐标系中有一矩形纸片OABC,O为原点,点A,C分别在x轴,y轴上,点B坐标为(m,)(其中m>0),在BC边上选取适当的点E和点F,将△OCE沿OE翻折,得到△OGE;再将△ABF沿AF翻折,恰好使点B与点G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求过点O,G,A的抛物线的解析式和对称轴;
(3)在抛物线的对称轴上是否存在点P,使得△OPG是等腰三角形?若不存在,请说明理由;若存在,直接答出所有满足条件的点P的坐标(不要求写出求解过程).

查看答案和解析>>

科目:初中数学 来源:2009年湖北省咸宁市通城县中考数学模拟试卷(解析版) 题型:解答题

(2008•南平)如图,平面直角坐标系中有一矩形纸片OABC,O为原点,点A,C分别在x轴,y轴上,点B坐标为(m,)(其中m>0),在BC边上选取适当的点E和点F,将△OCE沿OE翻折,得到△OGE;再将△ABF沿AF翻折,恰好使点B与点G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求过点O,G,A的抛物线的解析式和对称轴;
(3)在抛物线的对称轴上是否存在点P,使得△OPG是等腰三角形?若不存在,请说明理由;若存在,直接答出所有满足条件的点P的坐标(不要求写出求解过程).

查看答案和解析>>

科目:初中数学 来源:2009年广东省茂名十中初中数学综合练习试卷(6)(解析版) 题型:解答题

(2008•南平)如图,平面直角坐标系中有一矩形纸片OABC,O为原点,点A,C分别在x轴,y轴上,点B坐标为(m,)(其中m>0),在BC边上选取适当的点E和点F,将△OCE沿OE翻折,得到△OGE;再将△ABF沿AF翻折,恰好使点B与点G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求过点O,G,A的抛物线的解析式和对称轴;
(3)在抛物线的对称轴上是否存在点P,使得△OPG是等腰三角形?若不存在,请说明理由;若存在,直接答出所有满足条件的点P的坐标(不要求写出求解过程).

查看答案和解析>>

科目:初中数学 来源:2008年福建省南平市中考数学试卷(解析版) 题型:解答题

(2008•南平)如图,平面直角坐标系中有一矩形纸片OABC,O为原点,点A,C分别在x轴,y轴上,点B坐标为(m,)(其中m>0),在BC边上选取适当的点E和点F,将△OCE沿OE翻折,得到△OGE;再将△ABF沿AF翻折,恰好使点B与点G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求过点O,G,A的抛物线的解析式和对称轴;
(3)在抛物线的对称轴上是否存在点P,使得△OPG是等腰三角形?若不存在,请说明理由;若存在,直接答出所有满足条件的点P的坐标(不要求写出求解过程).

查看答案和解析>>

同步练习册答案