精英家教网 > 初中数学 > 题目详情
(2010•玉溪模拟)如图,在梯形ABCD中,AB∥DC,∠D=90°,AD=DC=4,AB=1,F为AD的中点,则点F到BC的距离是   
【答案】分析:如图,过F作FE⊥CB于E,过M作BM⊥CD于M,连接BF,CF,根据勾股定理可以分别求出BF,CF,根据已知条件知道BM=4,CM=3,利用勾股定理可以求出CB,再利用勾股定理的逆定理即可证明△BFC是直角三角形,再利用三角形的面积公式即可求出EF,即点F到BC的距离.
解答:解:如图,过F作FE⊥CB于E,过M作BM⊥CD于M,
连接BF,CF,
∵AB∥DC,∠D=90°,AD=DC=4,AB=1,
并且F为AD的中点,
∴BF=,CF=2
而CM=CD-AB=3,BM=4,
∴CB=5,
又∵
∴△BFC是直角三角形,
∴S△BFC=BF×CF=BC×EF,
∴BF×CF=EF×BC,
∴EF=2.
也可以利用面积法计算!
点评:此题主要考查了梯形的性质和勾股定理及其逆定理的应用,还考查了三角形的面积公式,综合性比较强.
练习册系列答案
相关习题

科目:初中数学 来源:2010年云南省玉溪市中考数学试卷(样卷)(解析版) 题型:填空题

(2010•玉溪模拟)化简分式=   

查看答案和解析>>

科目:初中数学 来源:2010年云南省玉溪市中考数学试卷(样卷)(解析版) 题型:填空题

(2010•玉溪模拟)不等式组的解集是   

查看答案和解析>>

科目:初中数学 来源:2010年云南省玉溪市中考模拟数学试卷(解析版) 题型:解答题

(2010•玉溪模拟)计算:+(-2010)-+2sin30°

查看答案和解析>>

科目:初中数学 来源:2010年云南省玉溪市中考模拟数学试卷(解析版) 题型:填空题

(2010•玉溪模拟)如图,在梯形ABCD中,AB∥DC,∠D=90°,AD=DC=4,AB=1,F为AD的中点,则点F到BC的距离是   

查看答案和解析>>

同步练习册答案