精英家教网 > 初中数学 > 题目详情

如图,OB是以(O,a)为圆心,a为半径的⊙O1的弦,过B点作⊙O1的切线,P为劣弧数学公式上的任一点,且过P作OB、AB、OA的垂线,垂足分别是D、E、F.
(1)求证:PD2=PE•PF;
(2)当∠BOP=30°,P点为OB的中点时,求D、E、F、P四个点的坐标及S△DEF

(1)证明:连接PB,OP,
∵PE⊥AB,PD⊥OB,
∴∠BEP=∠PDO=90°,
∵AB切⊙O1于B,∠ABP=∠BOP,
∴△PBE∽△POD,
=
同理,△OPF∽△BPD
=
=
∴PD2=PE•PF;

(2)解:连接O1B,O1P,
∵AB切⊙O1于B,∠POB=30°,
∴∠ABP=30°,
∴∠O1BP=90°-30°=60°,
∵O1B=O1P,
∴△O1BP为等边三角形,
∴O1B=BP,
∵P为弧BO的中点,
∴BP=OP,
即△O1PO为等边三角形,
∴O1P=OP=a,
∴∠O1OP=60°,
又∵P为弧BO的中点,
∴O1P⊥OB,
在△O1DO中,∵∠O1OP=60°O1O=a,
∴O1D=a,OD=a,
过D作DM⊥OO1于M,∴DM=OD=a,
OM=DM=a,
∴D(-a,a),
∵∠O1OF=90°,∠O1OP=60°
∴∠POF=30°,
∵PE⊥OA,
∴PF=OP=a,OF=a,
∴P(-a,),F(-a,0),
∵AB切⊙O1于B,∠POB=30°,
∴∠ABP=∠BOP=30°,
∵PE⊥AB,PB=a,
∴∠EPB=60°
∴PE=a,BE=a,
∵P为弧BO的中点,
∴BP=PO,
∴∠PBO=∠BOP=30°,
∴∠BPO=120°,
∴∠BPE+∠BPO=120°+60°=180°,
即OPE三点共线,
∵OE=a+a=a,
过E作EM⊥x轴于M,∵AO切⊙O1于O,
∴∠EOA=30°,
∴EM=OE=a,OM=a,
∴E(-a,a),
∵E(-a,a),D(-a,a),
∴DE=-a-(-a)=a,
DE边上的高为:a,
∴S△DEF=×a=a2
故答案为:D(-a,a),E(-a,a),F(-a,0),P(-a,);S△DEF=a2
分析:(1)连接PB,OP,利用AB切⊙O1于B求证△PBE∽△POD,得出=,同理,△OPF∽△BPD,得出=,然后利用等量代换即可.
(2)连接O1B,O1P,得出△O1BP和△O1PO为等边三角形,根据直角三角形的性质即可解得D、E、F、P四个点的坐标.
再利用三角形的面积公式可直接求出三角形DEF的面积.
点评:本题主要考查学生对相似三角形的判定与性质,切割线定理,坐标与图形性质等知识点的理解和掌握,此题综合性强,难度较大,属于难题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,OAB是以6cm为半径的扇形,AC切弧AB于点A交OB的延长线于点C,如果弧AB的长等于3cm,AC=4cm,则图中阴影部分的面积为(  )
A、15cm2B、6cm2C、4cm2D、3cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,OAB是以6为半径的扇形,AC切弧AB于点A交OB的延长线于点C,若弧AB=3cm,AC=4cm,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,OAB是以12cm为半径的扇形,AC切弧AB于点A交OB的延长线于点C,如果弧AB的长等于6cm,AC=8cm.则图中阴影部分的面积为
12
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,OB是矩形OABC的对角线,抛物线y=-
13
x2+x+6经过B,C两点,
(1)求点B的坐标:
(2)D、E分别是OC、OB上的点,OD=5,OE=2EB,过D、E的直线交x轴于F,试说明△FOE与△OBC是否相似;
(3)若点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案