精英家教网 > 初中数学 > 题目详情
如图,点M、N都在反比例函数的图象上,则△OMN的面积为
3
2
3
2
分析:如图,过点M、N作MC,ND分别垂直于x轴,易得△OMN的面积为梯形CDNM的面积.
解答:解:如图,过点M、N作MC,ND分别垂直于x轴.
∵点M(1,2)、N(2,1)都在反比例函数的图象上,
∴S△MCO=S△NOD
∴S△OMN=S△MCO+S梯形CDMN-S△NOD=S梯形CDMN=
1
2
(1+2)×(2-1)=
3
2

故填:
3
2
点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,平面直角坐标系上有A(a,0)、B(0,-b)、C(b,0)三点,且a≥b>0,抛物线y=(x-2)(x-m)-(n-2)(n-m). (m,n为常数,且m+2≥2n>0),经过点A和点C,顶点为P
(1)当m,n满足什么关系时,S△AOB最大;
(3)如图,当△ACP为直角三角形时,判断以下命题是否正确:“直角三角形DEF的三个顶点都在这条抛物线上,且DF∥x轴,那么△ACP与△DEF斜边上的高相等”,如果正确请予以证明,不正确请举出反例.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中,矩形ABCO的边OA在y正半轴上,OC在x正半轴上,点D是线段OC上一点,过点D作DE⊥AD交直线BC于点E,以A、D、E为顶点作矩形ADEF.
(1)求证:△AOD∽△DCE;
(2)若点A坐标为(0,4),点C坐标为(7,0).
①当点D的坐标为(5,0)时,抛物线y=ax2+bx+c过A、F、B三点,求点F的坐标及a、b、c的值;
②若点D(k,0)是线段OC上任意一点,点F是否还在①中所求的抛物线上?如果在,请说明理由;如果不在,请举反例说明;
(3)若点A的坐标是(0,m),点C的坐标是(n,0),当点D在线段OC上运动时,是否也存在一条抛物线,使得点F都落在该抛物线上?若存在,请直接用含m精英家教网、n的代数式表示该抛物线;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在四边形ABCD的AB边上任取一点E(点E不与点A、点B重合),分别连接ED、EC,可以把四边形ABCD分成3个三角形.如果其中有2个三角形相似,我们就把点E叫做四边形ABCD的AB边上的相似点;如果这3个三角形都相似,我们就把点E叫做四边形ABCD的AB边上的强相似点.
(1)若图1中,∠A=∠B=∠DEC=50°,说明点E是四边形ABCD的AB边上的相似点;
精英家教网
(2)①如图2,画出矩形ABCD的AB边上的一个强相似点.(要求:画图工具不限,不写画法,保留画图痕迹或有必要的说明.)
②对于任意的一个矩形,是否一定存在强相似点?如果一定存在,请说明理由;如果不一定存在,请举出反例.
(3)在梯形ABCD中,AD∥BC,AD<BC,∠B=90°,点E是梯形ABCD的AB边上的一个强相似点,判断AE与BE的数量关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•同安区质检)如图,在直角梯形ABCD中,∠A=90°,DC∥AB,CD=
12
AB=a,AD=3,E为线段BC上的动点(不与点B、点C重合),EF⊥AB于F,EG⊥AD于G,设EF=x,EG=y.
(1)求y关于x的函数关系式(系数可含a),并写出自变量x的取值范围;
(2)无论a为何正数,在点E运动的过程中,我们都可以看出y随着x的增大而减小.小明说此时四边形AFEG的周长w也是随着x的增大而减小.你认为他说的是否正确?如果正确,请说明理由;如果不正确,请举出反例.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,矩形ABCD中,AB:BC=2:3,点E、F分别在边AD和CD上,且AF⊥BE于O,求
AF
BE
的值;
(2)在上面的问题中,若
AF
BE
=k,通过变式,我们可以得到如下的两个命题:
①若将AF沿直线AB方向平移到PQ,将BE沿直线AD方向平移到RS,然后将PQ与RS同时绕点O旋转(保持PQ与RS垂直),则
PQ
RS
=k;
②设P、R、Q、S依次是矩形的边AB、BC、CD、DA上的点,若=k,则PQ⊥RS.精英家教网
(Ⅰ)判断命题的真假性:①
 
;②
 
;(在横线上填“真命题”或“假命题”)
(Ⅱ)若其中有假命题,请你在图3中,用画图的方法举反例进行说明;若以上两个命题都是真命题,请选择其中一个给予证明.

查看答案和解析>>

同步练习册答案