精英家教网 > 初中数学 > 题目详情
已知抛物线y=ax2+bx+c(a≠0)过点A(-3,0),B(1,0),C(0,3)三点.
(1)求该抛物线的函数关系式;
(2)若抛物线的顶点为P,连接PA、AC、CP,求△PAC的面积;
(3)过点C作y轴的垂线,交抛物线于点D,连接PD、BD,BD交AC于点E,判断四边形PCED的形状,并说明理由.

【答案】分析:(1)根据待定系数法将A(-3,0),B(1,0),C(0,3)三点代入解析式求出即可;
(2)利用两点之间距离公式求出,进而得出△PAC为直角三角形,求出面积即可;
(3)首先求出点D的坐标为(-2,3),PC=DP,进而得出四边形PCED是菱形,再利用∠PCA=90°,得出答案即可.
解答:(1)由题意得:
解得:
∴y=-x2-2x+3;

(2)∵y=-x2-2x+3=-(x+1)2+4,
∴P(-1,4),
∵A(-3,0),B(1,0),C(0,3),

∵PA2=PC2+AC2
∴∠PCA=90°,


(3)四边形PCED是正方形,
∵点C与点D关于抛物线的对称轴对称,点P为抛物线的顶点,
∴点D的坐标为(-2,3),PC=DP,
∵A(-3,0),C(0,3),代入y=ax+b,

解得:
∴直线AC的函数关系式是:y=x+3,
同理可得出:直线DP的函数关系式是:y=x+5,
∴AC∥DP,
同理可得:PC∥BD,
∴四边形PCED是菱形,
又∵∠PCA=90°,
∴四边形PCED是正方形.
点评:此题考查了二次函数解析式的确定、函数图象交点坐标的求法以及菱形与正方形的判定方法,难度不大,细心求解即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案