精英家教网 > 初中数学 > 题目详情
如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作发现

如图2,固定△ABC,使△DEC绕点C顺时针旋转.当点D恰好落在AB边上时,填空:
①线段DE与AC的位置关系是
 

②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是
 
,证明你的结论;
(2)猜想论证
当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.
考点:全等三角形的判定与性质,平行线的判定,等边三角形的判定与性质
专题:
分析:(1)①根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;
②根据等边三角形的性质可得AC=AD,再根据直角三角形30°角所对的直角边等于斜边的一半求出AC=
1
2
AB,然后求出AC=BD,再根据等边三角形的性质求出点C到AB的距离等于点D到AC的距离,然后根据等底等高的三角形的面积相等解答;
(2)根据旋转的性质可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角边”证明△ACN和△DCM全等,根据全等三角形对应边相等可得AN=DM,然后利用等底等高的三角形的面积相等证明.
解答:解:(1)①DE∥AC,
理由如下:
∵△DEC绕点C旋转点D恰好落在AB边上,
∴AC=CD,
∵∠BAC=90°-∠B=90°-30°=60°,
∴△ACD是等边三角形,
∴∠ACD=60°,
又∵∠CDE=∠BAC=60°,
∴∠ACD=∠CDE,
∴DE∥AC;

②∵∠B=30°,∠C=90°,
∴CD=AC=
1
2
AB,
∴BD=AD=AC,
根据等边三角形的性质,△ACD的边AC、AD上的高相等,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
即S1=S2
故答案为:DE∥AC;S1=S2

(2)如图3,∵△DEC是由△ABC绕点C旋转得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
∴∠ACN=∠DCM,
在△ACN和△DCM中,
∠ACN=∠DCM
∠CMD=∠N=90°
AC=CD

∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
即S1=S2
点评:本题考查了全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

化简:(a+b)2+a(a-2b)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,两副直角顶点重合的直角三角板摆放在桌面上,求证:∠AOD与∠BOC互补.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的一元二次方程:x2-2mx+m2-4=0.
(1)求证:这个方程有两个不相等的实数根;
(2)当抛物线y=x2-2mx+m2-4与x轴的交点位于原点的两侧,且到原点的距离相等时,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,且点B(3,1),B′(6,2).
(1)请你根据位似的特征并结合点B的坐标变化回答下列问题:
①若点A(
5
2
,3),则A′的坐标为
 

②△ABC与△A′B′C′的相似比为
 

(2)若△ABC的面积为m,求△A′B′C′的面积.(用含m的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

先化简再求值
(1)(x-
x
x+1
)•
x+1
x2+4x+4
÷
x2-2x
x2-4
,其中x=-
1
2

(2)(2x-y)(2x+y)-(2x+y)2+2,其中x=2-1,y=2.

查看答案和解析>>

科目:初中数学 来源: 题型:

若实数x满足等式(x+4)3=-27,则x=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①ac>0;②2|b|>|a+c|;③b2-4ac≥0;④b+2a>c,其中正确的结论是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB∥CD,DA平分∠BDC,∠ADE=90°,∠B=120°,则∠BDE=
 
度.

查看答案和解析>>

同步练习册答案