精英家教网 > 初中数学 > 题目详情
如图,四边形OABC的顶点A(0,4),B(-2,4),C(-4,0).过作B、C直线l,将直线l平移,平移后的直线l与x轴交于D,与y轴交于点E.
探究:当直线l向左或向右平移时(包括直线l与BC直线重合),在直线AB上是否存在P,使△PDE为等腰三角形?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.
由A(0,4),B(-2,4)、C(-4,0)得:OA=4,OC=4,
直线BC:y=2x+8,
又∵BCDE,
∴设直线DE的解析式是:y=2x+b,
∴D(-
b
2
,0),E(0,b).
∴OD=
1
2
b,OE=b.
①如图1、2,以点D为直角顶点,作PP1⊥x轴,
在Rt△ODE中,OE=2OD,
可证Rt△ODE≌Rt△P1PD,
∴OD=PP1=4,DP1=OE=8.
∴OP1=12,
∴P(-12,4),P(-4,4).




②以点E为直角顶点,如图3,
∴△AEP≌△ODE,
∴AE=OD,OE=AP,
∴AE=
1
2
OE,
∴OE=2OA=8,
∴AP=8,
∴P(8,4),
如图4,可以得出△PAE≌△EOD,
∴AE=DO,PA=OE.
∴OE=2AE,
∵AE+OE=4,
∴AE=
4
3
,OE=
8
3

∴PA=
8
3

∴P(-
8
3
,4).
以E为直角顶点,E在O点的下方不存在.


③以P为直角顶点,如图5,作PF⊥x轴于F,
∴易得△PAE≌△PFD,
∴PA=PF=4,
∴P(-4,4);

如图6,作DH⊥AB于H,易得出:
△PHD≌△EAP,
∴HD=AP,AE=HP,
∴AE=8,AP=4,
∴P(4,4).
综上所述,P点坐标为:
P1(-12,4),P2(-4,4),P3(8,4),P4(-
8
3
,4),P5(4,4).

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,函数y=2x+12的图象分别交x轴、y轴于A、B两点.过点A的直线交y轴正半轴于点C,且点C为线段OB的中点.
(1)求直线AC的表达式;
(2)如果四边形ACPB是平行四边形,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

解答题:如图,⊙P与x轴相切于坐标原点O,⊙P与y轴交于点A(0,2),点B的坐标为(-2
2
,0),连接BP交⊙P于点C
(1)求线段BC的长;
(2)求直线AC的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知以AB为直径的圆与x轴交于A、B两点,与y轴交于C、D两点,A、C两点的坐标分别为A(-1,0)、C(0,3),直线DE交x轴交于点E(-
9
4
,0).
(1)求该圆的圆心坐标和直线DE的解析式;
(2)判断直线DE与圆的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一次函数y=mx-n的图象如图,则下面结论正确的是(  )
A.m<0,n<0B.m<0,n>0C.m>0,n>0D.m>0,n<0

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,P是y轴上一动点,是否存在平行于y轴的直线x=t,使它与直线y=x和直线y=-
1
2
x+2分别交于点D、E(E在D的上方),且△PDE为等腰直角三角形?若存在,求t的值及点P的坐标;若不存在,请说明原因.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在等腰三角形ABC中,∠B=90°,AB=BC=4米,点P以1米/分的速度从A点出发移动到B点,同时点Q以2米/分的速度从点B移动到C点(当一个点到达后全部停止移动).
(1)设经过x分钟后,△PCB的面积为y1,△QAB的面积为y2,求出y1,y2关于x的函数关系式;
(2)同时移动多少分钟,这两个三角形的面积相等?
(3)移到时间在什么范围内时,①△PCB的面积大于△QAB的面积?②△PCB的面积小于△QAB的面积?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知点A、B分别在x轴、y轴上,AB=12,∠OAB=30°,经过A、B的直线l以每秒1个单位的速度向下作匀速平移运动,与此同时,点P从点B出发,在直线l上以每秒1个单位的速度沿直线l向右下方向作匀速运动.设它们运动的时间为t秒.
(1)直接写出A、B点坐标是A点______,B点______;
(2)用含t的代数式求出表示点P的坐标;
(3)过O作OC⊥l于C,过C作CD⊥x轴于D,问:t为何值时,以P为圆心、1为半径的圆与直线OC相切?并写出此时⊙P与直线CD的位置关系.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=-
3
4
x+6
与x,y轴分别交于点A,C,过点A、C分别作x,y轴的垂线,交于点B,点D为AB的中点.点P从点A出发,以每秒1个单位的速度,沿△AOC边A→O→C→A的方向运动,运动时间为t(秒).
(1)求点B的坐标;
(2)设△APC的面积为S,求S关于t的函数解析式;
(3)在点P的运动过程中,是否存在点P,使△ADP是等腰三角形?若存在,请求出运动时间t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案