【题目】如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE,DG,请判断BE与DG的关系,并证明。
【答案】垂直且相等
【解析】试题分析:
延长GD交BE于点M,由已知条件易证△BCE≌△DCG,可得BE=DG,∠BEC=∠DGC;再由∠CDG+∠DGC=90°,∠CDG=∠EDM可得∠BEC+∠EDM=90°,从而可得∠EMD=90°,可到GD⊥BE.
试题解析:
BE与DG的关系是:垂直且相等,理由如下:
∵四边形ABCD与四边形ECGF都是正方形,
∴EC=CG,∠BCE=∠DCG=90°,BC=CD,
∴△BCE≌△DCG(SAS),
∴BE=DG,∠BEC=∠DGC,
又∵∠CDG+∠DGC=90°,∠CDG=∠EDM,
∴∠BEC+∠EDM=90°,
∴∠EMD=180°-90°=90°,
∴GD⊥BE,即BE与DG的关系是垂直且相等.
科目:初中数学 来源: 题型:
【题目】(2016·长春中考)如图,在平面直角坐标系中,点P(1,4),Q(m,n)在函数y=[Math Processing Error] (x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B,过点Q分别作x轴、y轴的垂线,垂足为点C,D.QD交AP于点E,随着m的增大,四边形ACQE的面积( )
A. 减小 B. 增大 C. 先减小后增大 D. 先增大后减小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016·宁夏中考)如图,已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.
(1)求证:AB=AC;
(2)若AB=4,BC=2 ,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列不等式的变形中,正确的结论有( );①若a>b,则a-3>b-3;②若a>b,则-3a>-3b;③若a>b,则(m2+1)a>(m2+1)b;④若a>b且m≠0,则-ma<-mb
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2 其中正确结论的个数是( )
A. 1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解南京市民每天的阅读时间情况,随机抽取了部分市民进行调查,根据调查结果绘制如下尚不完整的频数分布表:
阅读时间 x(min) | 0≤x <30 | 30≤x <60 | 60≤x <90 | x≥90 | 合计 |
频数 | 450 | 400 | ② | 50 | ④ |
频率 | ① | 0.4 | 0.1 | ③ | 1 |
(1)补全表格中①~④的数据;
(2)将每天阅读时间不低于60min的市民称为“阅读爱好者”,若我市约有800万人,请估计我市能称为“阅读爱好者”的市民约有多少万人.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com