精英家教网 > 初中数学 > 题目详情
计算:
(1)(1-
2
0-tan60°+(-
1
2
-1;     
(2)3
2
(1-
2
)+
2
1-
2
考点:二次根式的混合运算,零指数幂,负整数指数幂,特殊角的三角函数值
专题:计算题
分析:(1)根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=1-
3
-2,然后合并即可;
(2)先进行二次根式的乘法运算和分母有理化得到
2
-6+2(
2
-1),然后合并即可.
解答:解:(1)原式=1-
3
-2
=-1-
3

(2)原式=3
2
-6-
2
2
-1

=3
2
-6-2(
2
+1)
=3
2
-6-2
2
-2
=
2
-8.
点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB∥DE,AB=DE,AC=DF.求证:BC=EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

先化简,再求值:(
x-1
x
-
x-2
x+1
)÷
2x2-x
x2+2x+1
,其中x=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,AB=AC,作以AB为直径的⊙O与边BC交于点D,过点D作⊙O的切线,分别交AC、AB的延长线于点E、F.
(1)求证:EF⊥AC;
(2)若BF=2,CE=1.2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,AB=10(AB>AD),AD与BC之间的距离为6,点E在线段AB上移动,以E为圆心,AE长为半径作⊙E.

(1)如图1,若E是AB的中点,求⊙E在AD所在的直线上截得的弦长;
(2)如图2,若⊙E与BC所在的直线相切,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在菱形ABCD中,AE⊥BC,垂足为E,对角线BD=4,tan∠CBD=
1
2
.求:
(1)边AB的长;
(2)∠ABE的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,梯形ABCD中,AD∥BC,AB=CD=4
3
,AD=3,∠B=30°.动点E从点B出发,以每秒1个单位长度的速度在线段BC上运动;动点F同时从点B出发,以每秒2个单位长度的速度在线段BC上运动.以EF为边作等边△EFG,与梯形ABCD在线段BC的同侧.设点E、F运动时间为t,当点F到达C点时,运动结束.
(1)当等边△EFG的边EG恰好经过点A时,求运动时间t的值;
(2)在整个运动过程中,设等边△EFG与梯形ABCD的重合部分面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;
(3)如图2,当点F到达C点时,将等边△EFG绕点E旋转α°(0<α<360),直线EF分别与直线CD、直线AD交于点M、N.是否存在这样的α,使△DMN为等腰三角形?若存在,请求出此时线段DM的长度;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,AD∥BC,∠DAB=∠ABC=90°,E为CD的中点,联结AE并延长交BC的延长线于F;
(1)联结BE,求证:BE=EF.
(2)联结BD交AE于M,当AD=1,AB=2,AM=EM时,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

一元二次方程x2+2x-n=0有两个相等的实数根,则n=
 

查看答案和解析>>

同步练习册答案