精英家教网 > 初中数学 > 题目详情

△ABC中,c为最大的边,如果a2+b2=c2,则△ABC是


  1. A.
    锐角三角形
  2. B.
    直角三角形
  3. C.
    钝角三角形
  4. D.
    无法确定
B
分析:由于c为最大的边,且a2+b2=c2,可确定△ABC是直角三角形.
解答:∵c为最大的边,a2+b2=c2
∴△ABC是直角三角形,
故选B.
点评:本题考查了勾股定理的逆定理.解题的关键是熟练掌握勾股定理的逆定理的内容.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、△ABC中,c为最大的边,如果a2+b2=c2,则△ABC是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到AE,连接EC.
(1)如果AB=AC,∠BAC=90°
①当点D在线段BC上时(不与点B重合),如图1,请你判断线段CE,BD之间的位置关系和数量关系(直接写出结论);
②当点D在线段BC的延长线上时,请你在图2中画出图形,并判断①中的结论是否仍然成立,并证明你的判断.
(2)如图3,若点D在线段BC上运动,DF⊥AD交线段CE于点F,且∠ACB=45°,AC=3
2
,试求线段CF长的最大值.
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•李沧区一模)【问题引入】
几个人拎着水桶在一个水龙头前面排队打水,水桶有大有小.他们该怎样排队才能使得总的排队时间最短?
假设只有两个人时,设大桶接满水需要T分钟,小桶接满水需要t分钟(显然T>t),若拎着大桶者在拎着小桶者之前,则拎大桶者可直接接水,只需等候T分钟,拎小桶者一共等候了(T+t)分钟,两人一共等候了(2T+t)分钟;反之,若拎小桶者在拎大桶者前面,容易求出出两人接满水等候(T+2t)分钟.可见,要使总的排队时间最短,拎小桶者应排在拎大桶者前面.这样,我们可以猜测,几个人拎着水桶在一个水龙头前面排队打水,要使总的排队时间最短,需将他们按水桶从小到大排队.
规律总结:
事实上,只要不按从小到大的顺序排队,就至少有紧挨着的两个人拎着大桶者排在拎小桶者之前,仍设大桶接满水需要T分钟,小桶接满水需要t分钟,并设拎大桶者开始接水时已等候了m分钟,这样拎大桶者接满水一共等候了(m+T)分钟,拎小桶者一共等候了(m+T+t)分钟,两人一共等候了(2m+2T+t)分钟,在其他人位置不变的前提下,让这两个人交还位置,即局部调整这两个人的位置,同样介意计算两个人接满水共等候了
2m+2t+T
2m+2t+T
分钟,共节省了
T-t
T-t
分钟,而其他人等候的时间未变,这说明只要存在有紧挨着的两个人是拎大桶者在拎小桶者之前都可以这样调整,从而使得总等候时间减少.这样经过一系列调整后,整个队伍都是从小打到排列,就打到最优状态,总的排队时间就最短.
【方法探究】
一般的,对某些设计多个可变对象的数学问题,先对其少数对象进行调整,其他对象暂时保持不变,从而化难为易,取得问题的局部解决.经过若干次这种局部的调整,不断缩小范围,逐步逼近目标,最终使问题得到解决,这种数学思想就叫做局部调整法.
【实践应用1】
如图1在锐角△ABC中,AB=4
2
,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是多少?
解析:
(1)先假定N为定点,调整M到合适的位置使BM+MN有最小值(相对的),容易想到,在AC上作AN′=AN(即作点N关于AD的对称点N'),连接BN′交AD于M,则M点是使BM+MN有相对最小值的点.(如图2,M点是确定方法找到的)
(2)在考虑点N的位置,使BM+MN最终达到最小值.可以理解,BM+MN=BM+MN′,所以要使BM+MN′有最小值,只需使
BM+MN′=BN′
BM+MN′=BN′
,此时BM+MN的最小值是
4
4

【实践应用2】
如图3,把边长是3的正方形等分成9个小正方形,在有阴影的小正方形内(包括边界)分别取点P、R,于已知格点Q(每个小正方形的顶点叫做格点)构成三角形,则△PQR的最大面积是
2
2
,请在图4中画出面积最大时的△PQR的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,△ABC中,BC为最大边,AB=AC,CD=BF,BD=CE,则∠DEF的取值范围是________.

查看答案和解析>>

同步练习册答案