精英家教网 > 初中数学 > 题目详情

如图①,在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等.
(1)求∠EAF的度数;
(2)在图①中,连接BD分别交AE、AF于点M、N,将△ADN绕点A顺时针旋转90°至△ABH位置,得到图②.求证:MN2=MB2+ND2
(3)在图②中,若BE=4,DF=6,数学公式,求AG,MN的长.

解:(1)在Rt△ABE和Rt△AGE中,AB=AG,AE=AE,
∴Rt△ABE≌Rt△AGE,
∴∠BAE=∠GAE.
同理,Rt△ADF≌Rt△AGF,
∴∠GAF=∠DAF.
∵四边形ABCD是正方形,
∴∠BAD=90°

(2)证明:连接MH,
由旋转知:∠BAH=∠DAN,AH=AN,
∵四边形ABCD是正方形,∴∠BAD=90°,∵∠EAF=45°,
∴∠BAM+∠DAN=45°,∴∠HAM=∠BAM+∠BAH=45°,
∴∠HAM=∠NAM,又AM=AM,
∴△AHM≌△ANM,
∴MN=MH
∵四边形ABCD是正方形,
∴∠ADB=∠ABD=45°
由旋转知:∠ABH=∠ADB=45°,HB=ND,
∴∠HBM=∠ABH+∠ABD=90°,
∴MH2=HB2+ND2
∴MN2=MB2+ND2
(3)由(1)知,Rt△ABE≌Rt△AGE,Rt△ADF≌Rt△AGF,
∴BE=EG=4,DF=FG=6,则EF=10
设AG=x,则CE=x-4,CF=x-6.
∵CE2+CF2=EF2
∴(x-4)2+(x-6)2=102
解这个方程,得x1=12,x2=-2(舍去).
∴AG=12.

在(2)中,MN2=MB2+ND2
设MN=a,则
.即
分析:(1)根据正方形的性质和全等三角形的判定方法证明Rt△ABE≌Rt△AGE和Rt△ADF≌Rt△AGF,由全等三角形的性质即可求出
(2)连接MH,由旋转知:∠BAH=∠DAN,AH=AN,由旋转知:∠ABH=∠ADB=45°,HB=ND,所以∠HBM=∠ABH+∠ABD=90°,所以MH2=HB2+ND2,所以MN2=MB2+ND2
(3)由(1)知,Rt△ABE≌Rt△AGE,Rt△ADF≌Rt△AGF,设AG=x,则CE=x-4,CF=x-6.因为CE2+CF2=EF2,所以(x-4)2+(x-6)2=102.解这个方程,求出x的值即可得到AG=12,在(2)中,MN2=MB2+ND2,MN=a,则,所以.即
点评:本题考查了正方形的性质、直角三角形的性质、全等三角形的判定和性质以及勾股定理的运用和一元二次方程的运用,题目的综合性很强,难度不小.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、把正方形OFGE纸板按如图①方式放置在正方形纸板ABCD上,顶点G在对角线AC,并把正方形OFGE绕顶点A沿逆时针方向旋转,旋转角为а.
(1)如图②,当а=90°时,请直接写出线段DE与BF的数量关系和位置关系;
(2)如图③,当0°<а<90°时,(1)中的结论是否发生改变?若不变,请给出证明.若发生改变,请举例说明;
(3)如图④,将图①、图③中的两个正方形都改为矩形,其他条件不变,设AB=kAD(k>0),当0°<а<90°时,(1)中的结论是否发生改变?若不变,请给出证明.若发生改变,请写出改变后的新结论,并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)填空:如图1,在正方形PQRS中,已知点M、N分别在边QR、RS上,且QM=RN,连接PN、SM相交于点O,则∠POM=
 
度;
(2)如图2,在等腰梯形ABCD中,已知AB∥CD,BC=CD,∠ABC=60度.以此为部分条件,精英家教网构造一个与上述命题类似的正确命题并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图1,在正方形ABCD中,若点E是△DBC内的一点,且DE=DC,BE=CE.
(1)连接AE.说明△ABE≌△DCE的理由;
(2)求∠BDE与∠CDE度数的比值;
(3)拓展探索:若只将题中的条件“正方形ABCD”换成条件“梯形ABCD中,AD∥BC,AB=DC,2∠DBC=∠DCB”.如图2,研究∠BDE与∠CDE度数的比值是否与(2)中的结论相同,写出你的研究结果并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图1,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD于点F.
(1)求证:EF+
1
2
AC=AB;
(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与A1的运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图2,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E1⊥A1C1,垂足为E1,请猜想E1F1
1
2
A1C1与AB三者之间的数量关系,并证明你的猜想;
(3)在(2)的条件下,当A1E1=3,C1E1=2时,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

课本练习拓展:
(1)如图1,在正方形ABCD中,E是BC上的一点,△ABE经过旋转后得到△ADF,
①旋转中心是点
A
A
;旋转角度最少是
90
90
度.
②爱动脑筋的小兵,在CD边上取点H使得∠HAE=45°,他发现:HE=BE+HD,他的发现正确吗?请你判断并说明理由.
(2)思维闯关:
如图2,在直角梯形ABCD中AD∥BC(BC>AD),∠B=90°BC=AB=6,E是 AB上一点,且∠DCE=45°,BE=2,则DE的长=
5
5
.(小兵运用解答(1)中所积累的经验和知识做出了该题)
(3)动手闯过:
①小明有一块如图3所示的纸片,其中∠A=∠C=90°,AB=AD.小明请小兵只剪一刀后把它拼成正方形,请你帮助小兵在图中画出剪拼得示意图.
②小兵好朋友小红现有两块同小明一样的纸片,如图4,小兵能否在每块上各剪一刀,然后拼成一个大的正方形?若能,请你画出剪法和拼法的示意图;若不能,简要说明理由.

查看答案和解析>>

同步练习册答案