| A. | (5,3) | B. | (5,4) | C. | (3,5) | D. | (4,5) |
分析 过P作PC⊥AB于点C,过P作PD⊥x轴于点D,由切线的性质可求得PD的长,则可得PB的长,由垂径定理可求得CB的长,在Rt△PBC中,由勾股定理可求得PC的长,从而可求得P点坐标.
解答 解:![]()
如图,过P作PC⊥AB于点C,过P作PD⊥x轴于点D,连接PB,
∵P为圆心,
∴AC=BC,
∵A(0,2),B(0,8),
∴AB=8-2=6,
∴AC=BC=3,
∴OC=8-3=5,
∵⊙P与x轴相切,
∴PD=PB=OC=5,
在Rt△PBC中,由勾股定理可得PC=$\sqrt{P{B}^{2}-B{C}^{2}}$=$\sqrt{{5}^{2}-{3}^{2}}$=4,
∴P点坐标为(4,5),
故选D.
点评 本题主要考查切线的性质和垂径定理,利用切线的性质求得圆的半径是解题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 三条垂直平分线的交点 | B. | 三条内角角平分线的交点 | ||
| C. | 重心 | D. | 无法确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | +(-5.2)与-5.2 | B. | +(+5.2)与-5.2 | C. | -(-5.2)与5.2 | D. | 5.2与+|-5.2| |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{4}{9}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{3}$ | D. | $\frac{9}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com