精英家教网 > 初中数学 > 题目详情
如图,在正方形ABCD中,E是BC上一点,且BC:EC=4:1,F是DC的中点.
(1)判断△AEF的形状,并说明理由;
(2)若正方形的边长为4,求△AEF的面积.
分析:(1)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形;
(2)把(1)的4a换成4,然后求出AF、EF,再根据三角形的面积公式列式计算即可得解.
解答:解:(1)△AEF是直角三角形.
理由如下:设正方形的边长为4a,
∵F是DC的中点,
∴DF=CF=2a,
∵BC:EC=4:1,
∴EC=a,BE=4a-a=3a,
在Rt△ADF中,AF2=(4a)2+(2a)2=20a2
在Rt△ECF中,EF2=(2a)2+a2=5a2
在Rt△ABE中,AE2=(4a)2+(3a)2=25a2
∴AF2+EF2=AE2
∴△AEF是直角三角形;

(2)正方形的边长为4时,4a=4,a=1,
AF=
20
=2
5

EF=
5

△AEF的面积=
1
2
AF•EF=
1
2
×2
5
×
5
=5.
点评:本题考查了正方形的性质,勾股定理的应用,勾股定理逆定理的应用,用正方形的边长表示出△AEF的各边的平方是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案