精英家教网 > 初中数学 > 题目详情
12.已知:平行四边形的两条对角线长分别为10和14,则此平行四边形边长x的取值范围是2<x<12.

分析 根据平行四边形对角线互相平分求出两对角线的一半,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求解.

解答 解:∵平行四边形的两条对角线的长分别是10和14,
∴两对角线的一半分别是5,7,
∵7-5=2,7+5=12,
∴边长x的取值范围是2<x<12.
故答案为:2<x<12.

点评 本题考查了平行四边形对角线互相平分的性质,三角形的三边关系,熟记性质并考虑利用三边关系求解是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.如图,直线y=$\frac{1}{2}$x+2分别与x轴、y轴相交于点A、点B.
(1)求点A和点B的坐标;
(2)若点P是y轴上的一点,设△AOB、△ABP的面积分别为S△AOB与S△ABP,且S△ABP=2S△AOB,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知:OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于F,射线CE交射线OB于G.
(1)如图①,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系:CF=CG;
(2)如图②,若∠AOB=120°,∠DCE=∠AOC,试判断线段CF与线段CG的数量关系并加以证明;
(3)若∠AOB=α,当∠DCE满足什么条件时,你在(2)中得到的结论仍然成立,请直接写出∠DCE满足的条件.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,在矩形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F,取EF的中点G,连接CG,BG,BD,DG,下列结论:
①BE=CD;
②∠DGF=135°;
③△BEG≌△DCG;
④∠ABG+∠ADG=180°;
⑤若$\frac{AB}{AD}$=$\frac{2}{3}$,则3S△BDG=13S△DGF
其中正确的结论是①③④⑤.(请填写所有正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.数学活动:数学活动课上,老师提出如下数学问题:
已知四边形ABCD与BEFG都为正方形,P为DF的中点,连接AP,EP,如图1,当点F与点C重合时,求证:AP=PE,AP⊥PE.
独立思考:请你证明老师提出的问题;
合作交流:解决完上述问题后,“翱翔”小组的同学受此启发,把正方形BEFG绕点B逆时针旋转,当F落在BD上时(如图2),他们认为老师提出的结论仍然成立.
“翱翔”小组的认识是否正确?请说明理由.
发现问题:解决完上述问题后,如图(3),老师将正方形BEFG在图1的基础上绕点B旋转角度α(0°<α<360°),让同学们写出有关△APE的正确结论.“兴趣”小组的同学们写出了两个正确结论:①△APE为等腰直角三角形;②△APE的面积存在最小值.
学习任务:
①若BE=1,AB=$\sqrt{2}$,请你写出△APE面积的最小值为$\frac{3-2\sqrt{2}}{4}$(不要求进行说理);
②请你再写出一个有关△APE的正确结论:答案不唯一,如:在①的条件下,△APE的面积存在最大值,最大面积为$\frac{3+2\sqrt{2}}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.若代数式$\frac{x+1}{x-2}$的值为零,则x=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.二次函数y=ax2+bx+c(a≠0)的图象与反比例函数y=$\frac{k}{x}$(k≠0)的图象相交(如图),则不等式ax2+bx+c>$\frac{k}{x}$的解集是(  )
A.1<x<4或x<-2B.1<x<4或-2<x<0
C.0<x<1或x>4或-2<x<0D.-2<x<1或x>-4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在如图所示的直角坐标系中,解答下列问题:
(1)分别写出点A、B的坐标;
(2)将△ABC绕点A顺时针旋转90°,画出旋转后的△AB1C1
(3)求线段BB1所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.码头工人每天往一艘轮船上装载货物,装载速度y(吨/天)与装完货物所需时间x(天)之间的函数关系如图.
(1)求y与x之间的函数表达式;
(2)由于遇到紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天至少要卸多少吨货物?
(3)若码头原有工人10名,且每名工人每天的装卸量相同,装载完毕恰好用了8天时间,在(2)的条件下,至少需要增加多少名工人才能完成任务?

查看答案和解析>>

同步练习册答案