精英家教网 > 初中数学 > 题目详情

如图,P是⊙O外的一点,PA、PB分别与⊙O相切于点A、B,C是数学公式上的任意一点,过点C的切线分别交PA、PB于点D、E.
(1)若PA=4,求△PED的周长;
(2)若∠P=40°,求∠DOE的度数.

解:(1)∵DA,DC都是圆O的切线,
∴DC=DA,
同理EC=EB,PA=PB,
∴三角形PDE的周长=PD+PE+DE=PD+DC+PE+BE=PA+PB=2PA=8,
即三角形PDE的周长是8;

(2)∵∠P=40°,
∴∠PDE+∠PED=140°,
∴∠ADC+∠BEC=(180-∠PDE)+(180-∠PED)=360°-140°=220°,
∵DA,DC是圆O的切线,
∴∠ODC=∠ODA=∠ADC;
同理:∠OEC=∠BEC,
∴∠ODC+∠OEC=(∠ADC+∠BEC)=110°,
∴∠DOE=180-(∠ODC+∠OEC)=70°.
分析:(1)可通过切线长定理将相等的线段进行转换,得出三角形PDE的周长等于PA+PB的结论;
(2)根据三角形的内角和求出∠ADC和∠BEC的度数和,然后根据切线长定理,得出∠EDO和∠DEO的度数和,再根据三角形的内角和求出∠DOE的度数.
点评:本题考查的是切线长定理,切线长定理图提供了很多等线段,分析图形时关键是要仔细探索,找出图形的各对相等切线长.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、已知,如图,MN是?ABCD外的一条直线,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′为垂足.求证:AA′+CC′=BB′+DD′.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示是某地地形的一部分(除D,E外每个拐角都是直角),从A到C有两条道路,一条是从A经过B再到C,另一条是从A经过E,D等地再到C.如何走近一些呢?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知,如图,MN是?ABCD外的一条直线,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′为垂足.求证:AA′+CC′=BB′+DD′.

查看答案和解析>>

科目:初中数学 来源:2010-2011学年四川省达州市渠县中学九年级(上)第二学月数学试卷(解析版) 题型:解答题

已知,如图,MN是?ABCD外的一条直线,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′为垂足.求证:AA′+CC′=BB′+DD′.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,OC是∠AOB外的一条射线,OE平分∠AOC,OF平分∠BOC,若∠AOC=1000,∠BOC=400,求出图中其它的角。

附加题:若∠AOB=n0,求∠EOF的度数?

查看答案和解析>>

同步练习册答案