精英家教网 > 初中数学 > 题目详情
已知:二次函数为y=x2-x+m,
(1)写出它的图象的开口方向,对称轴及顶点坐标;
(2)m为何值时,顶点在x轴上方;
(3)若抛物线与y轴交于A,过A作ABx轴交抛物线于另一点B,当S△AOB=4时,求此二次函数的解析式.
(1)∵a=1>0,
∴抛物线开口方向向上;
对称轴为直线x=-
-1
2×1
=
1
2

4×1•m-(-1)2
4×1
=
4m-1
4

顶点坐标为(
1
2
4m-1
4
);

(2)顶点在x轴上方时,
4m-1
4
>0,
解得m>
1
4


(3)令x=0,则y=m,
所以,点A(0,m),
∵ABx轴,
∴点A、B关于对称轴直线x=
1
2
对称,
∴AB=
1
2
×2=1,
∴S△AOB=
1
2
|m|×1=4,
解得m=±8.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,二次函数y=mx2+3(m-
14
)x+4(m<0)与x轴交于A、B两点,(A在B的左边),与y轴交于点C,且∠ACB=90度.
(1)求这个二次函数的解析式;
(2)矩形DEFG的一条边DG在AB上,E、F分别在BC、AC上,设OD=x,矩形DEFG的面积为S,求S关于x的函数解析式;
(3)将(1)中所得抛物线向左平移2个单位后,与x轴交于A′、B′两点(A′在B′的左边),矩形D′E′F′G′的一条边D′G′在A′B′上(G′在D′的左边),E′、F′分别在抛物线上,矩形D′E′F′G′的周长是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=ax2-x+c的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴是直线x=
1
2
,且图象向右平移一个单位后经过坐标原点O.
(1)求这个二次函数的解析式;
(2)求△ABC的外接圆圆心D的坐标及⊙D的半径;
(3)设⊙D的面积为S,在抛物线上是否存在点M,使得S△ACM=
12
S
?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数为y=x2-x+m,
(1)写出它的图象的开口方向,对称轴及顶点坐标;
(2)m为何值时,顶点在x轴上方;
(3)若抛物线与y轴交于A,过A作AB∥x轴交抛物线于另一点B,当S△AOB=4时,求此二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:二次函数为y=x2-x+m,
(1)写出它的图象的开口方向,对称轴及顶点坐标;
(2)m为何值时,顶点在x轴上方;
(3)若抛物线与y轴交于A,过A作AB∥x轴交抛物线于另一点B,当S△AOB=4时,求此二次函数的解析式.

查看答案和解析>>

同步练习册答案