精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD内接于半圆O,AB为直径,过点D的切线交BC的延长线于点E.若BE⊥DE,AD+DC=40,⊙O的半径为数学公式,求BC的长及tan∠CDB的值.

解:连接AC,
∵AB为直径,BE⊥DE,
∴∠ADB=∠ACB=∠E=90°,
∴DE∥AC,
∴∠EDC=∠DCA,
∵ED切圆O于点D,
∴∠EDC=∠DAC,
∴∠DCA=∠DAC,
∴AD=DC,
∵AD+DC=40,
∴AD=DC=20,
∵圆O的半径为,AB为直径,
∴AB=
∵四边形ABCD内接于半圆O,
∴∠DCE=∠DAB,
又∵∠E=∠ADB=90°,
∴△CDE∽△ABD,
===
∴CE=AD=×20=12,
∴DE===16,
∵DE是切线,ECB是割线,
∴ED2=EC•EB,
∴EB===
∴BC=BE-CE=
∴AC===32,
∴tan∠CAB===
∵∠CDB=∠CAB,
∴tan∠CDB=tan∠CAB=
则BC=,tan∠CDB=
分析:连接AC,由AB为直径,利用直径所对的圆周角为直角得到一对直角相等,再由BE垂直于DE得到∠E为直角,进而得到一对同位角相等,利用同位角相等两直线平行得到DE与AC平行,利用两直线平行内错角相等得到一对角相等,再利用弦切角等于夹弧所对的圆周角,等量代换及等角对等边得到AD=DC,由AD+DC=40求出AD=DC=20,由圆四边形的外角等于它的内对角得到一对角相等,再由一对直角相等得到三角形DEC与三角形ABD相似,由AD,DC,AB的长求出CE的长,根据勾股定理求出DE的长,再利用切割线定理求出EB的长,由EB-EC即可求出BC的长,根据同弧所对的圆周角相等得到∠CDB=∠CAB,在直角三角形ABC中,利用锐角三角函数定义求出tan∠CAB的值,即为tan∠CDB的值.
点评:此题考查了切线的性质,勾股定理,圆周角定理,以及相似三角形的判定与性质,熟练掌握切线的性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案