精英家教网 > 初中数学 > 题目详情
如图,已知二次函数y=ax2+bx的图象开口向下,与x轴的一个交点为B,顶点A在直线y=x上,O为坐标原点.
(1)证明:△AOB是等腰直角三角形;
(2)若△AOB的外接圆C的半径为1,求该二次函数的解析式;
(3)对题(2)中所求出的二次函数,在其图象上是否存在点P(点P与点A不重合),使得△POC是以PC为腰的等腰三角形,若存在,请求出点P的坐标,若不存在,请说明理由.
(1)∵点A在直线y=x上,
∴设点A的坐标为(m,m)
过点A作AD⊥x轴,交x轴于点D,
∵点A是二次函数图象的顶点,
∴直线AD是其对称轴,
∴点D是OB的中点.
∴OD=DB=AD,
∴△AOB是等腰直角三角形.

(2)若△AOB的外接圆半径为1,则OC=BC=AC=1;
∴A(1,1),B(2,0);
设抛物线的解析式为y=a(x-1)2+1,则有:
a×(2-1)2+1=0,a=-1;
∴抛物线的解析式为y=-(x-1)2+1;

(3)存在,点P(
1
2
3
4
);
此题要分两种情况:
①等腰△POC以CO、PC为腰,此时C与A、B重合,显然此种情况不符合题意;
②等腰△POC以PO、PC为腰,此时P点在CO的垂直平分线上,所以P点的横坐标为
1
2

代入抛物线的解析式中,得:y=-(
1
2
-1)2+1=
3
4

∴P点的坐标为(
1
2
3
4
),
综合上述两种情况可知,存在符合条件的P点,且P(
1
2
3
4
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,二次函数y=-x2-2x的图象与x轴交于点A、O,在抛物线上有一点P,满足S△AOP=3,则点P的坐标是(  )
A.(-3,-3)B.(1,-3)
C.(-3,-3)或(-3,1)D.(-3,-3)或(1,-3)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=-
1
2
x2
+bx+c的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一位运动员在距篮下4.5米处跳起投篮,篮球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最高度3.5米,篮筐中心到地面距离为3.05米,建立坐标系如图.该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,他跳离地面的高度为0.2米,问这次投篮是否命中,为什么?若不命中,他应向前(或向后)移动几米才能使球准确命中?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,-3);
(1)求抛物线的对称轴及k的值;
(2)抛物线的对称轴上是否存在一点P,使得|PB-PC|的值最大?若存在,求出点P的坐标;
(3)如果点M是抛物线在第三象限的一动点;当M点运动到何处时,M点到AC的距离最大?求出此时的最大距离及M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,抛物线c1经过A,B,C三点,顶点为D,且与x轴的另一个交点为E.
(1)求抛物线c1解析式;
(2)求四边形ABDE的面积;
(3)△AOB与△BDE是否相似,如果相似,请予以证明;如果不相似,请说明理由;
(4)设抛物线c1的对称轴与x轴交于点F,另一条抛物线c2经过点E(抛物线c2与抛物线c1不重合),且顶点为M(a,b),对称轴与x轴相交于点G,且以M,G,E为顶点的三角形与以D,E,F为顶点的三角形全等,求a,b的值.(只需写出结果,不必写出解答过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,在平面直角坐标系中,已知△ABC是等边三角形,点B的坐标为(12,0),动点P在线段AB上从点A向点B以每秒
3
个单位的速度运动,设运动时间为t秒.以点P为顶点,作等边△PMN,点M,N在x轴上.
(1)当t为何值时,点M与点O重合;
(2)求点P坐标和等边△PMN的边长(用t的代数式表示);
(3)如果取OB的中点D,以OD为边在△AOB内部作如图②所示的矩形ODEF,点E在线段AB上.设等边△PMN和矩形ODEF重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=-
2
3
x2+
4
3
x+2的图象与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴与x轴交于点D.点M从O点出发,以每秒1个单位长度的速度向B运动,过M作x轴的垂线,交抛物线于点P,交BC于Q.
(1)求点B和点C的坐标;
(2)设当点M运动了x(秒)时,四边形OBPC的面积为S,求S与x的函数关系式,并指出自变量x的取值范围;
(3)在线段BC上是否存在点Q,使得△DBQ成为以BQ为一腰的等腰三角形?若存在,求出点Q的坐标,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某种产品的年产量不超过1000吨,该产品的年产量(单位:吨)与费用(单位:万元)之间函数的图象是顶点在原点的抛物线的一部分(如图1);该产品的年销售量(单位:吨)与销售单价(单位:万元/吨)之间函数的图象是线段(如图2),若生产出的产品都能在当年销售完,则年产量是多少吨时,所获毛利润最大,最大利润是多少(毛利润=销售额-费用).

查看答案和解析>>

同步练习册答案