精英家教网 > 初中数学 > 题目详情
如图,小红作出了边长为1的第1个正三角形△A1B1C1,算出了正△A1B1C1的面积,然后分别取△A1B1C1三边的中点A2B2C2,作出了第二个正三角形△A2B2C2,算出第2个正△A2B2C2的面积,用同样的方法作出了第3个正△A3B3C3,算出第3个正△A3B3C3的面积,依此方法作下去,由此可得第n次作出的正△AnBnCn的面积是  

试题分析:过A1作A1D⊥B1C1于D,
∵等边三角形A1B1C1
∴B1D=
由勾股定理得:A1D=
∴△A1B1C1的面积是×1×=
∵C2、B2、A2分别是A1B1、A1C1、B1C1的中点,
∴B2C2=B1C1,A2B2=A1B1,A2C2=A1C1
===
∴△A2B2C2∽△A1B1C1,且面积比是1:4,=
同理△A3B3C3∽△A2B2C2,且面积比是1:4,=

==×=
故答案为:

点评:本题考查了相似三角形的判定和性质,等边三角形,三角形的中位线的应用,解此题的关键是根据求出结果得出规律=,题目比较典型,但有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,E是BC上的一点,连接AE,作BF⊥AE,垂足为H,交CD于F,作CG∥AE,交BF于G.求证:
(1)CG=BH;
(2)FC2=BF•GF;
(3)=

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,有一块△ABC材料,BC=10,高AD=6,把它加工成一个矩形零件,使矩形的一边GH在BC上,其余两个顶点E,F分别在AB,AC上,那么矩形EFHG的周长l的取值范围是(  )
A.0<l<20B.6<l<10C.12<l<20D.12<l<26

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在Rt△ABC中,∠C为直角,CD⊥AB于点D.BC=3,AB=5,写出其中的一对相似三角形是          ;并写出它的面积比        

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,且AD=AB,则△ADE的周长与△ABC的周长的比为          

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,菱形,矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.设菱形相邻两个内角的度数分别为m°和n°,将菱形的“接近度”定义为|m﹣n|,于是,|m﹣n|越小,菱形越接近于正方形.
①若菱形的一个内角为70°,则该菱形的“接近度”等于 _________ 
②当菱形的“接近度”等于 _________ 时,菱形是正方形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若把△ABC的各边扩大到原来的3倍后,得△A′B′C′,则下列结论错误的是(  )
A.△ABC∽△A′B′C′
B.△ABC与△A′B′C′的相似比为
C.△ABC与△A′B′C′的对应角相等
D.△ABC与△A′B′C′的相似比为

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,依次连接一个边长为1的正方形各边的中点,得到第二个正方形,再依次连接第二个正方形各边的中点,得到第三个正方形,按此方法继续下去,则第n个正方形的面积是  

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,已知AB=3cm,BC=5.6cm,AC=5cm,且,则BD= _____cm,DC= _____cm.

查看答案和解析>>

同步练习册答案