精英家教网 > 初中数学 > 题目详情

如图抛物线y=a(x-1)2+4与x轴交于A、B两点,与y轴交于点C,D是抛物线的顶点,已知CD=数学公式
(1)求抛物线的解析式;
(2)在抛物线上共有三个点到直线BC的距离为m,求m的值;
(3)将(1)中的抛物线向上平移t(t>0)个单位,与直线CD交于点G、H,设平移后的抛物线的顶点为D1,与y轴的交点为C1,是否存在实数t,使得DH⊥HD1,若存在,求出t的值;若不存在,说明理由.

解:(1)∵D(1,4),CD=
∴C(0,3),
∴a=-1,
∴y=-(x-1)2+4,
即y=-x2+2x+3;

(2)∵B(3,0)、C(0,3),
∴直线BC:y=-x+3,将直线BC向上平移b个单位得直线MN:y=-x+3+b,
则第三个点一定是直线MN与抛物线的唯一公共点,
联立
消去y得:x2-3x+b=0,
由△=0
得到b=
作CP⊥MN于P,则∠CMN=∠OCB=45°,
CM=
∴m=CP=

(3)由CC1=DD1=t,CC1∥DD1
∴CC1D1D为平行四边形,
∴C1D1∥CD,
∴∠C1D1D=∠CDE=45°,
∵DH⊥HD1,∴∠DD1H=45°,
即△DHD1为等腰直角三角形,且DD1=t,
∴H(t+1,t+4),
由点H在新抛物线y=-x2+2x+3+t上,
∴-+2(t+1)+3+t=t+4,
解得t=2或t=0(舍),
∴t=2.
分析:(1)可根据解析式直接得出顶点D的坐标,又可根据CD的长得出C的坐标,代入解析式中即可得出a的值,即得抛物线的解析式;
(2)根据平移的性质写出直线平移后的方程,则第三个点一定是直线MN与抛物线的唯一公共点,联立抛物线的方程,使判别式等于0,即可得出b的平移后的直线方程,作CP⊥MN于P,即可得出m的值;
(3)易判断CC1D1D为平行四边形和△DHD1为等腰直角三角形,由点H在新抛物线上,代入H的坐标,即可得出t的值.
点评:此题考查了抛物线解析式的确定、平行四边形的判定及性质、三角形面积的求法等重要知识点本题的难点在于考虑问题要全面,读懂题意.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图抛物线y=-
3
3
x2-
2
3
3
x+
3
,x轴于A、B两点,交y轴于点C,顶点为D.
(1)求A、B、C的坐标;
(2)把△ABC绕AB的中点M旋转180°,得到四边形AEBC:
①求E点坐标;
②试判断四边形AEBC的形状,并说明理由;
(3)试探索:在直线BC上是否存在一点P,使得△PAD的周长最小?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图抛物线y=ax2-5ax+4a与x轴相交于点A、B,且过点C(5,4).
(1)求a的值和该抛物线顶点P的坐标.
(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图抛物线y=-x2+5x+k经过点C(4,0)与x轴交于另一点A,与y轴交于点B.
(1)求AC的长;
(2)求出△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图抛物线y=ax2-5x+4a与x轴相交于点A、B,且过点C(5,4).
(1)求a的值和该抛物线顶点P的坐标.
(2)该抛物线与y轴的交点为D,则四边形ABCD为
等腰梯形
等腰梯形

(3)将此抛物线沿x轴向左平移3个单位,再向上平移2个单位,请写出平移后图象所对应的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1996•山东)如图抛物线y=ax2+bx+c,若OB=OC=
1
2
OA,则b=(  )

查看答案和解析>>

同步练习册答案