精英家教网 > 初中数学 > 题目详情
计算:-14+(-52)×(-
5
3
)+|0.8-1|.
考点:有理数的混合运算
专题:计算题
分析:原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.
解答:解:原式=-1+25×
5
3
+0.2=-
4
5
+
125
3
=
613
15
点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

不等式
2x+1
2
x+2
2
+1的解集中,自然数的个数是(  )
A、3个B、4个C、2个D、无数个

查看答案和解析>>

科目:初中数学 来源: 题型:

列代数式:
(1)若一个两位数十位上的数是a,个位上的数是b,这个两位数是
 
.若一个三位数百位上的数为a,十位上的数是b,个位上的数c,这个三位数是
 

(2)电影院第一排有a个座位,后面每排比前一排多2个座位,则第x排的座位有
 
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
5a2b÷(-
1
3
ab)•(2ab2)2
;          
②[(-y52]3÷[(-y)3]5•y2
(
1
4
a5b3-
1
2
a4b4-
1
6
a3b2)÷0.5a3b2
;  
④(a-b)6•[-4(b-a)3]•(b-a)2÷(a-b)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直线y=
1
2
x+b与抛物线y=-
1
2
x2-
1
2
x+3交于A、B两点,且点A在x轴上,点B的横坐标为-4,点P为直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线交直线AB于点Q,作PH⊥AB于H.
(1)求b的值及sin∠PQH的值;
(2)设点P的横坐标为t,用含t的代数式表示点P到直线AB的距离PH的长,并求出PH之长的最大值以及此时t的值;
(3)连接PB,若线段PQ把△PBH分成的△PQB与△PQH的面积相等,求此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

两个全等的直角三角形ABC和DEF重合在一起,其中∠ACB=∠DFE=90°,∠BAC=∠EDF=60°,AC=DF=1.如图,固定△ABC不动,将△DEF沿线段AB向右平移,直至D、B两点重合为止.在此过程中,当点D不与A、B两点重合时,可作四边形CDBF.
(1)当点D移动到AB的中点时,四边形CDBF的形状是
 

(2)四边形CDBF是否可能为直角梯形?是否可能为等腰梯形?若可能,请画出相应的图形,并直接写出此时的平移距离;若不可能,只需作出判断,不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB和直线MN,点A、B、M、N均在小正方形的顶点上.
(1)在直线MN上找一点C(C点在小正方形的顶点上),使△ABC是轴对称图形(画出一种即可);
(2)请直接写出△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证:DE+BF=EF.
(1)感悟以下解题方法,并完成填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合.由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°∴∠ABG+∠ABF=90°+90°=180°.
因此,点G,B,F在同一条直线上.∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°∵∠1=∠2∴∠1+∠3=45°,即∠GAF=∠
 

又AG=AE,AF=AF∴△GAF≌
 
 
=EF,故DE+BF=EF
(2)方法迁移:如图2,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=
1
2
∠DAB,试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

有五张正面分别标有数字-2,-1,0,1,2的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2-2(a-1)x+a(a-3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2-(a2+1)x-a+2的图象不经过点(1,0)的概率是
 

查看答案和解析>>

同步练习册答案