精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知直线l1:y=3x+1与y轴交于点A,且和直线l2:y=mx+n交于点P(-2,a),根据以上信息解答下列问题:
(1)求a的值,判断直线l3:y=-
1
2
nx-2m是否也经过点P?请说明理由;
(2)不解关于x,y的方程组
y=3x+1
y=mx+n
,请你直接写出它的解;
(3)若直线l1,l2表示的两个一次函数都大于0,此时恰好x>3,求直线l2的函数解析式.
分析:(1)因为(-2,a)在直线y=3x+1上,可求出a=-5;由点P(-2,-5)在直线y=mx+n上,可得-2m+n=-5,将P点横坐标-2代入y=-
1
2
nx-2m,得y=-
1
2
n×(-2)-2m=-2m+n=-5,这说明直线l3也经过点P;
(2)因为直线y=3x+1直线y=mx+n交于点P,所以方程组
y=3x+1
y=mx+n
的解就是P点的坐标;
(3)因为直线l1,l2表示的两个一次函数都大于0,此时恰好x>3,所以直线l2过点(3,0),又有直线l2过点P(-2,-5),可得关于m、n的方程组,解方程组即可.
解答:解:(1)∵(-2,a)在直线y=3x+1上,
∴当x=-2时,a=-5(2分)
直线y=-
1
2
nx-2m也经过点P,
∵点P(-2,-5)在直线y=mx+n上,
∴-2m+n=-5,
∴将P点横坐标-2代入y=-
1
2
nx-2m,得y=-
1
2
n×(-2)-2m=-2m+n=-5,这说明直线l3也经过点P.(4分)

(2)解为
x=-2
y=-5
.(6分)

(3)∵直线l1,l2表示的两个一次函数都大于0,此时恰好x>3
∴直线l2过点(3,0),(7分)
又∵直线l2过点P(-2,-5)
3m+n=0
-2m+n=-5
解得
m=1
n=-3
(8分)
∴直线l2的函数解析式为y=x-3.(9分)
点评:用待定系数法确定函数的解析式,是常用的一种解题方法,另外本题还渗透了数形结合的思想,题出的比较好.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

6、如图,已知直线l1,l2,l3相交于点O,∠1=35°,∠2=25°,则∠3等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•郯城县一模)如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则cosα=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•黔南州)如图,已知直线l1∥l2,∠1=50°,那么∠2=
50°
50°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:已知直线l1∥l2,且l3、l4和l1、l2分别交于点A、B和点C、D,点P在AB上,设∠ADP=∠1,∠DPC=∠2,∠BCP=∠3.
(1)探究∠1、∠2、∠3之间的关系,并说明你的结论的正确性.
(2)若点P在A、B两点之间运动时(点P和A、B不重合),∠1、∠2、∠3 之间的关系
不会
不会
发生变化(填会或不会)
(3)如果点P在A、B两点外侧运动时,(点P和A、B不重合)
①当点P在射线AM上时,猜想∠1、∠2、∠3之间的关系为
∠2=∠3-∠1
∠2=∠3-∠1

②当点P在射线BN上时,猜想∠1、∠2、∠3之间的关系为
∠3=∠1-∠2
∠3=∠1-∠2
(不必证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在直线l3上有点P(点P与点C、D不重合),点A在直线l1上,点B在直线l2上.
(1)如果点P在C、D之间运动时,试说明∠PAC+∠PBD=∠APB;
(2)如果点P在直线l1的上方运动时,试探索∠PAC,∠APB,∠PBD之间的关系又是如何?
(3)如果点P在直线l2的下方运动时,∠PAC,∠APB,∠PBD之间的关系又是如何?
∠PAC=∠PBD+∠APB
∠PAC=∠PBD+∠APB
(直接写出结论)

查看答案和解析>>

同步练习册答案