精英家教网 > 初中数学 > 题目详情

在正方形ABCD中,对角线AC、BD交于点O,Q是CD上任意一点,DP⊥AQ,交BC于点P.
求证:(1)DQ=CP;
(2)OP⊥OQ.

解:
(1)在△DCP和△ADQ中,AD=CD,∠DCP=∠ADQ,
∠DQM+∠PDC=90°,∠DQM+∠DAQ=90°,
∴∠PDC=∠QAD,
∴△DCP≌△ADQ,
∴DQ=CP.

(2)在△OQD和△OPC中,
CP=QD,∠OCP=∠ODQ,DO=CO,
∴△OPC≌△OQD,
∴∠POC=∠QOD,
∵∠QOD+∠QOC=90°
∴∠POC+∠QOC=∠POQ=90°,即OQ⊥OP.
分析:(1)要证明DQ=CP,证明△DCP≌△ADQ即可.
(2)要证明OP⊥OQ,证明∠POQ=90°即可,证明△OPC≌△OQD得到∠POC=∠QOD即可.
点评:本题考查了正方形对角线互相垂直平分,考查了正方形四条边均相等,且各内角均为直角,解本题的关键是找出正确的全等三角形并进行证明,找出正确的对应角、对应边解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图所示,在正方形ABCD中,E为AD的中点,F为DC上的一点,且DF=
14
DC.求证:△BEF是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在正方形ABCD中,点G是BC上任意一点,连接AG,过B,D两点分别作BE⊥AG,DF⊥AG,垂足分别为E,F两点,求证:△ADF≌△BAE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黑河)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN
(1)如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别在AD、CD上,若∠MBN=
1
2
∠ABC,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.
(2)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=
1
2
∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF⊥CD,垂足为F,求证:EF=AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形ABCD中,P是CD上一点,且AP=BC+CP,Q为CD中点,求证:∠BAP=2∠QAD.

查看答案和解析>>

同步练习册答案