精英家教网 > 初中数学 > 题目详情
(2010•集美区模拟)已知:抛物线y=x2+(m-1)x+m-2与x轴相交于A(x1,0),B(x2,0)两点,且x1<1<x2
(1)求m的取值范围;
(2)记抛物线与y轴的交点为C,P(x3,m)是线段BC上的点,过点P的直线与抛物线交于点Q(x4,y4),若四边形POCQ是平行四边形,求抛物线所对应的函数关系式.
分析:(1)利用抛物线开口向上,当x=1时,y<0,进而求出m的取值范围即可;也可利用求根公式以及根的判别式求出即可;
(2)首先求出直线BC的解析式,进而求出P,Q点横坐标,再利用平行四边形的性质求出CO=PQ,进而求出m的值,得出抛物线所对应的函数关系式即可.
解答:解:(1)解法一:∵抛物线开口向上,当x=1时,y<0,
即:1+(m-1)+(m-2)<0,
解得:m<1,
则m的取值范围是m<1;
解法二:∵△=(m-1)2-4(m-2)=(m-3)2
由求根公式可得:x1=-1,x2=2-m,
∵x1<1<x2
∴2-m>1,
解得:m<1,
∴m的取值范围是m<1;

(2)解法一:由(1)可得B点坐标为:(2-m,0),C点坐标为:(0,m-2),
代入y=kx+b,得:
b=m-2
0=k(2-m)+m-2

解得:
k=1
b=m-2

故直线BC所对应的函数关系式为:y=x+m-2,
以P(x3,m)代入求得:m=x3+m-2,
解得:x3=2,
∵四边形POCQ是平行四边形,∴PQ⊥x轴,
∴x4=2,
y4=4+2(m-1)+m-2=3m,
PQ=OC=m-y4=m-3m=-2m=2-m,
解得:m=-2,
可得抛物线所对应的函数解析式为:y=x2-3x-4,
解法二:直线BC所对应的函数解析式为y=x+m-2,
以P(x3,m)代入求得:x3=2,
求出OP方程:y=
m
2
x,
∵CQ∥OP,可求出CQ方程:y=
m
2
x+m-2,
mx
2
+m-2=x2+(m-1)x+m-2,
解得:x4=1-
m
2

由1-
m
2
=x3=2,
解得:m=-2,
可得抛物线所对应的函数解析式为:y=x2-3x-4.
点评:此题主要考查了二次函数的综合应用以及平行四边形的性质和待定系数法求一次函数解析式等知识,根据已知得出CO=PQ进而用m表示出两线段长是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2010•集美区模拟)下列立体图形(如图)的俯视图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•集美区模拟)检验某厂生产的手表质量时,随机抽取了10只手表,在表中记下了每只手表的走时误差(正数表示比标准时间快,负数表示比标准时间慢)
手表序号 1 2 3 4 5 6 7 8 9 10 平均数
日走时误差 -2 0 1 -3 -1 0 2 4 -3 2 0
①这10只手表的日走时误差的极差是
7
7
秒;
②用这些手表日走时误差的平均数来衡量这些手表的精度是否合适?
答:
不合适
不合适
(填入“合适”或“不合适”)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•集美区模拟)已知直线y1=-x+b与双曲线y2=
kx
交于点P(-2,1)
(1)求直线、双曲线所对应的函数关系式;
(2)在同一直角坐标系中画出这两个函数图象的示意图,并观察图象回答:当x为何值时,y1>y2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•集美区模拟)如图,直线y=-
34
x+6分别与x轴、y轴相交于A、B两点,点P是线段AB上的动点,BP=t(0<t<8),点Q(8-t,0)是x轴上的动点,
(1)求AB的长;
(2)当t取何值时,△APQ是等腰三角形?

查看答案和解析>>

同步练习册答案