精英家教网 > 初中数学 > 题目详情
(2013•吉林)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点D、E、F分别是边AB、BC、AC的中点,连接DE、DF,动点P,Q分别从点A、B同时出发,运动速度均为1cm/s,点P沿A    F    D的方向运动到点D停止;点Q沿BC的方向运动,当点P停止运动时,点Q也停止运动.在运动过程中,过点Q作BC的垂线交AB于点M,以点P,M,Q为顶点作平行四边形PMQN.设平行四边形边形PMQN与矩形FDEC重叠部分的面积为y(cm2)(这里规定线段是面积为0有几何图形),点P运动的时间为x(s)
(1)当点P运动到点F时,CQ=
5
5
cm;
(2)在点P从点F运动到点D的过程中,某一时刻,点P落在MQ上,求此时BQ的长度;
(3)当点P在线段FD上运动时,求y与x之间的函数关系式.
分析:(1)当点P运动到点F时,求出AF=FC=3cm,BQ=AF=3cm,即可求出答案;
(2)根据在点P从点F运动到点D的过程中,点P落在MQ上得出方程t+t-3=8,求出即可;
(3)求出DE=
1
2
AC=3,DF=
1
2
BC=4,证△MBQ∽△ABC,求出MQ=
3
4
x,分为三种情况:①当3≤x<4时,重叠部分图形为平行四边形,根据y=PN•PD代入求出即可;②当4≤x<
11
2
时,重叠部分为矩形,根据图形得出y=3[(8-X)-(X-3))];③当
11
2
≤x≤7时,重叠部分图形为矩形,根据图形得出y=3[(x-3)-(8-x)],求出即可.
解答:解:(1)当点P运动到点F时,
∵F为AC的中点,AC=6cm,
∴AF=FC=3cm,
∵P和Q的运动速度都是1cm/s,
∴BQ=AF=3cm,
∴CQ=8cm-3cm=5cm,
故答案为:5.

(2)设在点P从点F运动到点D的过程中,点P落在MQ上,如图1,
则t+t-3=8,
t=
11
2

BQ的长度为
11
2
×1=
11
2
(cm);

(3)∵D、E、F分别是AB、BC、AC的中点,
∴DE=
1
2
AC=
1
2
×6=3,
DF=
1
2
BC=
1
2
×8=4,
∵MQ⊥BC,
∴∠BQM=∠C=90°,
∵∠QBM=∠CBA,
∴△MBQ∽△ABC,
BQ
BC
=
MQ
AC

x
8
=
MQ
6

MQ=
3
4
x,
分为三种情况:①当3≤x<4时,重叠部分图形为平行四边形,如图2,

y=PN•PD
=
3
4
x(7-x)
即y=-
3
4
x2+
21
4
x;
②当4≤x<
11
2
时,重叠部分为矩形,如图3,

y=3[(8-X)-(X-3))]
即y=-6x+33;
③当
11
2
≤x≤7时,重叠部分图形为矩形,如图4,

y=3[(x-3)-(8-x)]
即y=6x-33.
点评:本题考查了函数的应用,矩形的性质,平行四边形的性质,三角形的中位线等知识点的应用,主要考查学生综合运用性质进行计算的能力,用了分类讨论思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•吉林)如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=
20
20
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•吉林)如图所示,体育课上,小丽的铅球成绩为6.4m,她投出的铅球落在(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•吉林)如图,在平面直角坐标系中,抛物线所表示的函数解析式为y=-2(x-h)2+k,则下列结论正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•吉林)如图①,在平面直角坐标系中,点P(0,m2)(m>0)在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C1:y=
1
4
x2于点A、B,交抛物线C2:y=
1
9
x2于点C、D.原点O关于直线AB的对称点为点Q,分别连接OA,OB,QC和QD.
【猜想与证明】
填表:
m 1 2 3
AB
CD
      
     
由上表猜想:对任意m(m>0)均有
AB
CD
=
2
3
2
3
.请证明你的猜想.
【探究与应用】
(1)利用上面的结论,可得△AOB与△CQD面积比为
2
3
2
3

(2)当△AOB和△CQD中有一个是等腰直角三角形时,求△CQD与△AOB面积之差;
【联想与拓展】
如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C1于点F.在y轴上任取一点M,连接MA、ME、MD和MF,则△MAE与△MDF面积的比值为
8
27
8
27

查看答案和解析>>

同步练习册答案