精英家教网 > 初中数学 > 题目详情
19、如图,DB∥FG∥EC,∠ACE=36°,AP平分∠BAC,∠PAG=12°,则∠ABD=
60
度.
分析:要求∠ABD的度数,由DB∥FG,根据两直线平行,内错角相等,可知∠ABD=∠BAG,故只需求出∠BAG的度数即可.由已知FG∥EC,得出∠GAC=∠ACE=36°,则∠PAC=∠PAG+∠GAC=48°,又AP平分∠BAC,根据角平分线的定义,得出∠BAP=∠PAC=48°,从而求出∠BAG的度数.
解答:解:∵FG∥EC,
∴∠GAC=∠ACE=36°,
∴∠PAC=∠PAG+∠GAC=36°+12°=48°.
又∵AP平分∠BAC,
∴∠BAP=∠PAC=48°,
∴∠BAG=∠BAP+∠PAG=48°+12°=60°.
∵DB∥FG,
∴∠ABD=∠BAG=60°.
点评:本题综合考查了平行线的性质及角平分线的定义.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、如图,DB∥FG∥EC,∠ACE=36°,AP平分∠BAC,∠PAG=12°,求∠ABD的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,DBFGEC,∠ACE=36°,AP平分∠BAC,∠PAG=12°,则∠ABD=______度.
精英家教网

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,DBFGEC,∠ACE=36°,AP平分∠BAC,∠PAG=12°,求∠ABD的度数.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,DBFGEC,∠ABD=60°,∠ACE=36°,AP平分∠BAC

求∠PAG的度数.

查看答案和解析>>

同步练习册答案