精英家教网 > 初中数学 > 题目详情

点A(-2,3)在反比例函数数学公式的图象上,当1≤x≤6时,y的取值范围为________.

-6≤y≤-1
分析:首先利用待定系数法求出反比例函数k的值,再根据反比例函数的性质:当k<0时,y随x的增大而增大,求出x=1时的y的值,再算出x=-6时的y值,即可得到答案.
解答:∵点A(-2,3)在反比例函数的图象上,
∴k=xy=-2×3=-6,
∵k<0,
∴y随x的增大而增大,
∴当x=1时,y=-6,当x=6时,y=-1,
∴y的取值范围为-6≤y≤-1.
故答案为:-6≤y≤-1.
点评:此题主要考查了反比例函数的图象的性质,关键是掌握待定系数法求反比例函数解析式,以及反比例函数的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、如图1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.
(1)求证:BP=DP;
(2)如图2,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明;
(3)试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连接,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.
(1)试说明:BP=DP;
(2)如图2,若正方形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请画图用反例加以说明;
(3)试选取正方形ABCD的两个顶点,分别与正方形PECF的两个顶点连接,使得到的两条线段在正方形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论;
(4)旋转的过程中AP和DF的长度是否相等,若不等,直接写出AP:DF=
 

(5)若正方形ABCD的边长是4,正方形PECF的边长是1.把正方形PECF绕点C按逆时针方向旋转的过程中,△PBD的面积是否存在最大值、最小值?如果存在,试求出最大值、最小值;如果不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.
(1)试说明:BP=DP;
(2)如图2,若正方形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请画图用反例加以说明;
(3)试选取正方形ABCD的两个顶点,分别与正方形PECF的两个顶点连接,使得到的两条线段在正方形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论;
(4)旋转的过程中AP和DF的长度是否相等?若不等,直接写出AP:DF=
 

(5)若正方形ABCD的边长是4,正方形PECF的边长是1.把正方形PECF绕点C按逆时针方向旋转精英家教网的过程中,△PBD的面积是否存在最大值、最小值?如果存在,试求出最大值、最小值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中,在第一象限的矩形ABCO的边OA在y正半轴上,OC在x正半轴上,点D是线段OC上一点,过点D作DE⊥AD交直线BC于点E,以A、D、E为顶点作矩形ADEF.
(1)求证:△AOD∽△DCE;
(2)若点A坐标为(O,4),点C坐标为(7,0).
①当点D的坐标为(5,0)时,若抛物线经过A、F、B三点,求该抛物线的解析式;
②当点D(k,0)是线段OC(不包括端点)上任意一点,则点F仍在①中所求的抛物线上吗?请说明理由;
③当点A的坐标是(0,m),点C的坐标是(n,0),当点D在线段OC上运动时,是否了存在一条抛物线,使得点F始终落在该抛物线上?若存在,请直接写出该抛物线的解析式(用含m、n表示);若不存在,请说明理由.
(3)在第(2)题②的条件下,若点D(k,0)是在x轴上,且不在线段OC上的任意一点,其他条件不变,则点F是否还在①中所求的抛物线上?如果在,请以点D(k,0)在x负半轴上为例画出示意图(画在备用图上),并说明理由;如果不在,请举反例说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(12分)如图1,在平面上,给定了半径为的⊙,对于任意点,在射线上取一点,使得·,这种把点变为点的变换叫做反演变换,点与点叫做互为反演点,⊙称为基圆.
 
⑴如图2,⊙内有不同的两点,它们的反演点分别是,则与∠一定相等的角是(   ▲  )
A.∠B.∠C.∠D.∠
⑵如图3,⊙内有一点,请用尺规作图画出点的反演点;(保留画图痕迹,不必写画法).
⑶如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.已知基圆的半径为,另一个半径为的⊙,作射线交⊙于点,点关于⊙的反演点分别是,点为⊙上另一点,关于⊙的反演点为.求证:∠=90°.

查看答案和解析>>

同步练习册答案