精英家教网 > 初中数学 > 题目详情
精英家教网如图,正方形ABCD的边长为4,E为AB的中点,F在BC上,BF:FC=1:3,则△DEF的面积为
 
分析:由四边形ABCD是正方形,即可得AB=BC=CD=AD=4,∠A=∠B=∠C=90°,又由E为AB的中点,BF:FC=1:3,即可求得AE,BE,BF,CF的长,然后由S△DEF=S正方形ABCD-S△ADE-S△BEF-S△CDF,即可求得△DEF的面积.
解答:解:∵四边形ABCD是正方形,
∴AB=BC=CD=AD=4,∠A=∠B=∠C=90°,
∵E为AB的中点,BF:FC=1:3,
∴AE=BE=
1
2
AB=2,BF=
1
4
BC=1,CF=
3
4
BC=3,
∴S△DEF=S正方形ABCD-S△ADE-S△BEF-S△CDF=4×4-
1
2
×4×2-
1
2
×2×1-
1
2
×3×4=5.
故答案为:5.
点评:此题考查了正方形的性质以及三角形面积得求解方法.此题难度适中,解题的关键是注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案