精英家教网 > 初中数学 > 题目详情
(2013•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O的半径为(  )
分析:连接OC,先根据垂径定理求出PC的长,再根据勾股定理即可得出OC的长.
解答:解:连接OC,
∵CD⊥AB,CD=8,
∴PC=
1
2
CD=
1
2
×8=4,
在Rt△OCP中,
∵PC=4,OP=3,
∴OC=
PC2+OP2
=
42+32
=5.
故选C.
点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•徐州)如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)
(1)若△CEF与△ABC相似.
①当AC=BC=2时,AD的长为
2
2

②当AC=3,BC=4时,AD的长为
1.8或2.5
1.8或2.5

(2)当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•徐州)如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为
40
40
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•徐州)如图,点A、B、C在⊙O上,若∠C=30°,则∠AOB的度数为
60
60
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•徐州)如图,四边形ABCD是平行四边形,DE平分∠ADC交AB于点E,BF平分∠ABC,交CD于点F.
(1)求证:DE=BF;
(2)连接EF,写出图中所有的全等三角形.(不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•徐州)如图,二次函数y=
1
2
x2+bx-
3
2
的图象与x轴交于点A(-3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.
(1)请直接写出点D的坐标:
(-3,4)
(-3,4)

(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;
(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案