精英家教网 > 初中数学 > 题目详情

正方形ABCD的边长为1,AB、AD上各有一点P、Q,如果的周长为2,求的度数。

 

 

【答案】

45°.

【解析】

试题分析:首先从△APQ的周长入手求出PQ=DQ+BP,然后将△CDQ逆时针旋转90°,使得CD、CB重合,然后利用全等来解.

试题解析:如图所示,

△APQ的周长为2,即AP+AQ+PQ=2①,

正方形ABCD的边长是1,即AQ+QD=1,AP+PB=1,

∴AP+AQ+QD+PB=2②,

①-②得,PQ-QD-PB=0,

∴PQ=PB+QD.

延长AB至M,使BM=DQ.连接CM,△CBM≌△CDQ(SAS),

∴∠BCM=∠DCQ,CM=CQ,

∵∠DCQ+∠QCB=90°,

∴∠BCM+∠QCB=90°,即∠QCM=90°,

PM=PB+BM=PB+DQ=PQ.

在△CPQ与△CPM中,

CP=CP,PQ=PM,CQ=CM,

∴△CPQ≌△CPM(SSS),

∴∠PCQ=∠PCM=∠QCM=45°.

考点:(1)正方形的性质;(2)全等三角形的判定与性质.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网附加题
如图所示,正方形ABCD的边长为7,AE=BF=CG=DH=3,甲、乙两只蚂蚁同时从A点出发,甲蚂蚁以每秒
3
5
的速度沿路线AE→EF→FG→GH→HE→EB→BC→CD→DA循环爬行;乙蚂蚁以每秒
4
5
的速度沿路线AH→HG→GF→FE→EH→HD→DC→CB→BA循环爬行.那么出发后两只蚂蚁在第
 
s第一次相遇.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD的边长为4,P为对角线AC上一点,且CP=3
2
,PE⊥PB交CD于点E,则PE=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

正方形ABCD的边长为4,P是BC上一动点,QP⊥AP交DC于Q,设PB=x,△ADQ的面积为y.
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)(1)中函数若是一次函数,求出直线与两坐标轴围成的三角形面积;若是二次函数,请利用配方法求出抛物线的对称轴和顶点坐标;
(3)画出这个函数的图象;
(4)点P是否存在这样的位置,使△APB的面积是△ADQ的面积的
23
?若存在,求出BP的长;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD的边长为12cm,E为CD边上一点,DE=5cm.以点A为中心,将△ADE按顺时针方向旋转得△ABF,则点E所经过的路径长为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边长为6,点M在边DC上,M,N两点关于对角线AC对称,若DM=2,则tan∠ADN=
3
2
3
2

查看答案和解析>>

同步练习册答案