精英家教网 > 初中数学 > 题目详情
如图,经过原点的抛物线y=x2-2mx与x轴的另一个交点为A.过点P(m+1,
1
2
)作直线PH⊥y轴于点H,直线AP交y轴于点C.(点C不与点H重合)
(1)当m=2时,求点A的坐标及CO的长.
(2)当m>1时,问m为何值时CO=
3
2

(3)是否存在m,使CO=2.5HC?若存在,求出所有满足要求的m的值,并定出相对应的点C坐标;若不存在,请说明理由.
分析:(1)把m=2,代入抛物线的解析式,令y=0解方程,得到的非0解即为和x轴交点的横坐标,再根据相似三角形的判定和性质,进而求出CO的长;
(2)根据相似三角形的性质得到关于m的比例式,即可求出m的值;
(3)存在,本题要分:当m>1时;当0<m<1时;当-1<m<0时;当m<-1时;四种情况分别讨论,再求出满足题意的m值和相对应的点C坐标.
解答:解:(1)当m=2时,y=x2-4x,
令y=0,解得x1=0,x2=4,
∴A(4,0)
∵HP∥OA,
∴△CHP∽△COA,
HP
OA
=
CH
CO

HP=m+1=3,OA=4,OH=
1
2

∴CO=2;

(2)HP=m+1,OA=2m,CO=
3
2
,CH=1•

m+1
2m
=
1
1.5

解得m=3;

(3)①当m>1时(如图1),

HP
OA
=
CH
CO
,HP=m+1,OA=2m,CO=2.5HC,
m+1
2m
=
1
2.5

∴m=-5(舍去)
②当0<m<1时(如图2),

∵CO<HC,
又∵CO=2.5HC,
∴CH<0,
∵CH>0,
∴不存在m的值使CO=2.5HC.
③当-1<m<0时(如图3),

HP
OA
=
CH
CO
,HP=m+1,OA=-2m,CO=2.5HC,
m+1
-2m
=
1
2.5

m=-
5
9

∵CO=2.5HC,CO+HC=
1
2

HC=
1
7
,CO=
5
14

C(0,
5
14
)

④当m<-1时(如图4),

HP
OA
=
CH
CO
,HP=-m-1,OA=-2m,CO=2.5HC,
-m-1
-2m
=
1
2.5

∴m=-5,
∵CO=2.5HC,CO-HC=
1
2

HC=
1
3
,CO=
5
6

C(0,
5
6
)

综上所述当m=-
5
9
时,点C(0,
5
14
)
;当m=-5时,点C(0,
5
6
)
点评:此题主要考查了二次函数解析式的确定、相似三角形的判定和相似三角形的性质、需注意的是(3)题在不确C点的情况下需要分类讨论,以免漏解.题目的综合性强,难度也很大,有利于提高学生的综合解题能力,是一道不错的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

小明将她家乡的抛物线型彩虹桥按比例缩小后,绘制成如下图所示的示意图,图中的三条抛物线分别表示桥上的三条钢梁,x轴表示桥面,y轴经过中间抛物线的最高点,左右两条抛物线关于y轴对称,经过测算,右边抛物线的表达式为y=-
120
(x-30)2+5

精英家教网
(1)直接写出左边抛物线的解析式;
(2)求抛物线彩虹桥的总跨度AB的长;
(3)若三条钢梁的顶点M、E、N与原点O连成的四边形OMEN是菱形,你能求出钢梁最高点离桥面的高度OE的长吗?如果能,请写出过程;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•湖州)如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB的两个交点之间的距离为3
2
,且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y轴的抛物线条数是(  )

查看答案和解析>>

科目:初中数学 来源:2013-2014学年江苏省江阴市顾山九年级上学期期末考试数学试卷(解析版) 题型:选择题

.如图,10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的内接格点三角形.以O为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB的两个交点之间的距离为,且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y轴的抛物线条数是

A13?????? B14? ???? C15?????? D16

 

查看答案和解析>>

科目:初中数学 来源:2013年浙江省湖州市中考数学试卷(解析版) 题型:选择题

如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB的两个交点之间的距离为,且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y轴的抛物线条数是( )
A.16
B.15
C.14
D.13

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(江苏南通卷)数学(解析版) 题型:解答题

如图,经过点A(0,-4)的抛物线y=x2+bx+c与x轴相交于点B(-0,0)和C,O为坐标原点.

(1)求抛物线的解析式;

(2)将抛物线y=x2+bx+c向上平移个单位长度、再向左平移m(m>0)个单位长度,得到新抛物

线.若新抛物线的顶点P在△ABC内,求m的取值范围;

(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,求AM的长.

 

查看答案和解析>>

同步练习册答案