
证明:如图,连接AC,
∵AD=CD,∠ADC=60°,
∴△ADC是正三角形.
∴DC=CA=AD.
将△DCB绕点C顺时针旋转60°到△ACE的位置,连接EB,
∴DB=AE,CB=CE,∠BCE=∠ACE-∠ACB=∠BCD-∠ACB=∠ACD=60°,
∴△CBE为正三角形.
∴BE=BC,∠CBE=60°.
∴∠ABE=∠ABC+∠CBE=90°.
在Rt△ABE中,由勾股定理得AE
2=AB
2+BE
2.
∴BD
2=AB
2+BC
2.
分析:要证明BD
2=AB
2+BC
2,想到勾股定理,由于BD,AB,BC不在同一个三角形中,连接AC,将△DCB绕点C旋转60°到△ACE的位置,连接EB,证明△ABE是直角三角形即可.
点评:能够充分运用旋转的性质,把要证明的线段转换到一个三角形中,根据旋转的性质发现一个直角三角形,再根据勾股定理即可证明.