精英家教网 > 初中数学 > 题目详情
如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿折线BC﹣CD向点D运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动,设点F的运动时间为t秒.

(1)点F在边BC上.
①如图1,连接DE,AF,若DE⊥AF,求t的值;
②如图2,连结EF,DF,当t为何值时,△EBF与△DCF相似?
(2)如图3,若点G是边AD的中点,BG,EF相交于点O,试探究:是否存在在某一时刻t,使得?若存在,求出t的值;若不存在,请说明理由.
(1) ①t=1;②.(2).

试题分析:(1)①利用正方形的性质及条件,得出△ABF≌△DAE,由AE=BF列式计算.
②利用△EBF∽△DCF,得出,列出方程求解.
(2)①0<t≤2时如图3,以点B为原点BC为x轴,BA为y轴建立坐标系,先求出EF所在的直线和BG所在的直线函数关系式是,再利用勾股定理求出BG,运用,求出点O的坐标把O的坐标代入EF所在的直线函数关系式求解.②当t>2时如图4,以点B为原点BC为x轴,BA为y轴建立坐标系,以点B为原点BC为x轴,BA为y轴建立坐标系,先求出EF所在的直线和BG所在的直线函数关系式是,再利用勾股定理求出BG,运用,求出点O的坐标把O的坐标代入EF所在的直线函数关系式求解.
试题解析:(1)①如图1

∵DE⊥AF,
∴∠AOE=90°,
∴∠BAF+∠AEO=90°,
∵∠ADE+∠AEO=90°,
∴∠BAE=∠ADE,
又∵四边形ABCD是正方形,
∴AE=AD,∠ABF=∠DAE=90°,
在△ABF和△DAE中,

∴△ABF≌△DAE(ASA)
∴AE=BF,
∴1+t=2t,
解得t=1.
②如图2

∵△EBF∽△DCF

∵BF=2t,AE=1+t,
∴FC=4﹣2t,BE=4﹣1﹣t=3﹣t,

解得:(舍去),

(2)①0<t≤2时如图3,以点B为原点BC为x轴,BA为y轴建立坐标系,

A的坐标(0,4),G的坐标(2,4),F点的坐标(2t,0),E的坐标(0,3﹣t)
EF所在的直线函数关系式是:y=x+3﹣t,
BG所在的直线函数关系式是:y=2x,


∴BO=,OG=
设O的坐标为(a,b),

解得
∴O的坐标为(
把O的坐标为()代入y=x+3﹣t,得
=×+3﹣t,
解得,t=(舍去),t=
②当3≥t>2时如图4,以点B为原点BC为x轴,BA为y轴建立坐标系,

A的坐标(0,4),G的坐标(2,4),F点的坐标(4,2t﹣4),E的坐标(0,3﹣t)
EF所在的直线函数关系式是:y=x+3﹣t,
BG所在的直线函数关系式是:y=2x,
BG==2

∴BO=,OG=
设O的坐标为(a,b),

解得
∴O的坐标为(
把O的坐标为()代入y=x+3﹣t,得
=×+3﹣t,
解得:t=
综上所述,存在t=或t=,使得
【考点】四边形综合题.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

写出同时具备下列两个条件的一次函数表达式(写出一个即可)______.
(1)y随着x的增大而增大;
(2)图象经过点(1,2)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,Rt△PBD的斜边PB落在y轴上,tan∠BPD=.延长BD交x轴于点C,过点D作DA⊥x轴,垂足为A,OA=4,OB=3.
(1)求点C的坐标;
(2)若点D在反比例函数y=(k>0)的图象上,求反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

天水市某校为了开展“阳光体育”活动,需购买某一品牌的羽毛球,甲、乙两超市均以每只3元的价格出售,并对一次性购买这一品牌羽毛球不低于100只的用户均实行优惠:甲超市每只羽毛球按原价的八折出售;乙超市送15只羽毛球后其余羽毛球每只按原价的九折出售.
(1)请你任选一超市,一次性购买x(x≥100且x为整数)只该品牌羽毛球,写出所付钱y(元)与x之间的函数关系式.
(2)若共购买260只该品牌羽毛球,其中在甲超市以甲超市的优惠方式购买一部分,剩下的又在乙超市以乙超市的优惠方式购买.购买260只该品牌羽毛球至少需要付多少元钱?这时在甲、乙两超市分别购买该品牌羽毛球多少只?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:直线y=x+1经过点B(2,n),且与x轴交于点A.
(1)求n及点A坐标.
(2) 若点P是x轴上一点,且△APB的面积为6,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一次函数y="(m+4)x+" m+2的图象不经过第二象限,则整数m =_____       

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式)           

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知一次函数y=kx﹣1,若y随x的增大而增大,则它的图象经过(  )
A.第一、二、三象限B.第一、二、四象限
C.第一、三、四象限D.第二、三、四象限

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

请写出一个y随x增大而增大的正比例函数表达式,y=______________.

查看答案和解析>>

同步练习册答案