精英家教网 > 初中数学 > 题目详情
某学校计划租用7辆客车送初二年级师生去秋游,现有甲、乙两种型号客车,它们的载客量和租金如表.
甲种客车 乙种客车
栽客量(人/辆) 45 30
租金(元/辆) 500 320
(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数关系式,指出自变量的取值范围;
(2)若该校初二师生共有254名师生参加这次秋游,领队老师从学校预支租车费用3000元,问:有几种可行的租车方案?哪种租车方案能使预支的租车费用剩余最多?
分析:(1)设租用甲种客车x辆,则租用乙种客车(7-x)辆,租用甲种客车的费用为500x元,租用乙种客车的费用为320(7-x)元,租车总费用就等于两种租车费用之和;
(2)根据题意列出不等式组,求出不等式组的解救可以确定租车方案,再根据(1)的解析式就可以求出最节省的方案.
解答:解:(1)设租用甲种客车x辆,则租用乙种客车(7-x)辆,根据题意得租车总费用为y元.
则y=500x+320(7-x)=180x+2240 (0≤x≤7且x为整数);

(2)根据题意列不等式组得:
45x+30(7-x)≥254
500x+320(7-x)≤3000

解得:
x≥
44
15
x≤
38
9

∵x为整数,
∴x可取的值为3、4,
∴可行的租车方案有两种:3辆45座,4辆30座的,或4辆45座3辆30座的.
∵3×500+4×320=2780,4×500+320×3=2960>2780
∴第一种方案租用3辆45座,4辆30座的能使租车费用剩余最多.
点评:本题考查了运用一次函数解实际问题的运用,一元一次不等式组解实际问题的运用,方案设计的运用,在解答时运用一次函数的性质求解是关键.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某学校计划租用7辆客车送初二年级师生去秋游,现有甲、乙两种型号客车,它们的载客量和租金如表.
甲种客车 乙种客车
栽客量(人/辆) 45 30
租金(元/辆) 500 320
(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数关系式,指出自变量的取值范围;
(2)若该校初二师生共有254名师生参加这次秋游,领队老师从学校预支租车费用3000元,问:有几种可行的租车方案?哪种租车方案能使预支的租车费用剩余最多?

查看答案和解析>>

科目:初中数学 来源:辽宁省中考真题 题型:解答题

某学校计划租用6辆客车送一批师生参加一年一度的哈尔滨冰雕节,感受冰雕艺术的魅力,现有甲、乙两种客车,它们的载客量和租金如下表,设租用甲种客x车辆,租车总费用为y元。
(1)求出y(元)与x(辆)之间的函数关系式,指出自变量的取值范围;
(2)若该校共有240名师生前往参加,领队老师从学校预支租车费用1650元,试问预支的租车费用是否可以结余?若有结余,最多可结余多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

某学校计划租用6辆客车送一批师生参加一年一度的哈尔滨冰雕节,感受冰雕艺术的魅力.现有甲、乙两种客车,它们的载客量和租金如下表.设租用甲种客车辆,租车总费用为元.

甲种客车

乙种客车

载客量(人/辆)

45

30

租金(元/辆)

280

200

(1)求出(元)与(辆)之间的函数关系式,指出自变量的取值范围;

(2)若该校共有240名师生前往参加,领队老师从学校预支租车费用1650元,试问预支的租车费用是否可以结余?若有结余,最多可结余多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

某学校计划租用6辆客车送一批师生参加一年一度的哈尔滨冰雕节,感受冰雕艺术的魅力.现有甲、乙两种客车,它们的载客量和租金如下表.设租用甲种客车辆,租车总费用为元.

甲种客车

乙种客车

载客量(人/辆)

45

30

租金(元/辆)

280

200

(1)求出(元)与(辆)之间的函数关系式,指出自变量的取值范围;

(2)若该校共有240名师生前往参加,领队老师从学校预支租车费用1650元,试问预支的租车费用是否可以结余?若有结余,最多可结余多少元?

查看答案和解析>>

同步练习册答案