精英家教网 > 初中数学 > 题目详情

(本小题10分)如图11,已知二次函数y= -x2 +mx +4m的图象与x轴交于

A(x1,0),B(x2,0)两点(B点在A点的右边),与y轴的正半轴交于点C,且(x1+x2) - x1x2=10.

(1)求此二次函数的解析式.

(2)写出B,C两点的坐标及抛物线顶点M的坐标;

(3)连结BM,动点P在线段BM上运动(不含端点B,M),过点P作x轴的垂线,垂足为H,设OH的长度为t,四边形PCOH的面积为S.请探究:四边形PCOH的面积S有无最大值?如果有,请求出这个最大值;如果没有,请说明理由.

 

【答案】

解:(1)由根与系数的关系,得

∵(x1+x2) -x1x2=10,

∴ m + 4m =10, m=2.

∴二次函数的解析式为y = -x2 +2x +8.

(2)由-x2 +2x +8=0,解得x1= -2,x2=4.

y = -x2 +2x +8= -(x-1)2+9.

∴B,C,M的坐标分别为B(4,0),C(0,8),M(1,9).

(3)如图,过M作MN⊥x轴于N,则ON=1,MN=9,OB=4,BN=3.

∵OH=t(1<t<4),∴BH=4-t.

由PH∥MN,可求得PH=3BH=3(4-t),

∴S=(PH+CO)·OH

=(12-3t+8)t

= -t2+10t(1<t<4).

S= -t2+10t= -(t-)2+.

∵1<<4.

∴当t=时,S有最大值,其最大值为.

【解析】略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(11·湖州)(本小题10分)

如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF。

⑴求证:四边形AECF是平行四边形;

⑵若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长。

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(11·湖州)(本小题10分)
如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF。
⑴求证:四边形AECF是平行四边形;
⑵若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长。

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省启东市九年级寒假作业检测数学卷 题型:解答题

(本小题10分)

如图,抛物线与x轴交与A(1,0),B(- 3,0)两点,

1.(1)求该抛物线的解析式;

2.(2)抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源:2012届北京一六三中初三上学期模拟数学卷 题型:解答题

(本小题10分)如图,      抛物线与x轴的一个交点是A,与y轴的交点是B,且OA、OB(OA<OB)的长是方程的两个实数根.

1.(1)求A、B两点的坐标;

2. (2) 求出此抛物线的的解析式及顶点D的坐标;

3.(3)求出此抛物线与x轴的另一个交点C的坐标;

4.(4)在直线BC上是否存在一点P,使四边形PDCO为梯形?若存在,求出P点坐标,若不存在,说明理由.

 

查看答案和解析>>

同步练习册答案