精英家教网 > 初中数学 > 题目详情
解决下面问题:
如图,在△ABC中,∠A是锐角,点D,E分别在AB,AC上,且∠DCB=∠EBC=
12
∠A,BE与CD相交于点O,探究BD与CE之间的数量关系,并证明你的结论.

小新同学是这样思考的:
在平时的学习中,有这样的经验:假如△ABC是等腰三角形,那么在给定一组对应条件,如图a,BE,CD分别是两底角的平分线(或者如图b,BE,CD分别是两条腰的高线,或者如图c,BE,CD分别是两条腰的中线)时,依据图形的轴对称性,利用全等三角形和等腰三角形的有关知识就可证得更多相等的线段或相等的角.这个问题也许可以通过添加辅助线构造轴对称图形来解决.请参考小新同学的思路,解决上面这个问题.
分析:以C为顶点作∠FCB=∠DBC,CF交BE于F点,首先证明△BDC≌△CFB,就可以得出BD=CF,∠BDC=∠CFB,进而得出∠CFB=∠CEF就可以得出CE=CF而得出结论.
解答:解:BD=CE.理由如下:
如图,以C为顶点作∠FCB=∠DBC,CF交BE于F点.
在△BDC和△CFB中,
∠FCB=∠DBC
BC=BC
∠FBC=∠DCB

∴△BDC≌△CFB(SAS),
∴BD=CF,∠BDC=∠CFB,
∵∠DCB=∠EBC=
1
2
∠A,
∴∠DCB+∠EBC=∠A.
∵∠DCB+∠EBC=∠FOC,
∴∠FOC=∠A.
∵∠BDC=∠A+∠ACD,
∴∠CFB=∠A+∠ACD.
∴∠CFB=∠FOC+∠ACD.
∵∠FEC=∠FOC+∠ACD,
∴∠CFB=∠CEF,
∴CE=CF.
∴BD=CE.
点评:本题考查了等腰三角形的性质的运用,全等三角形的判定与性质的运用,三角形的外角与内角的关系的运用,解答时证明三角形全等是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下面材料:
镜面对称:镜前的物体与其在镜中的像关于镜面对称
①如图1,如果桌面上有一个用火柴摆出的等式,而你从前方墙上的镜子中看见的是如下式子:
那么你能立即对桌面上等式的正确性做出判断吗?
 

②如图2,镜前有黑、白两球,据说如果你用白球瞄准红球在镜中的像,击出的白球就能经镜面反弹击中黑球.你能说出其中的道理吗?
 

如果你有两面互相垂直的镜子,你想让击出的白球先后经两个镜面反弹,然后仍能击 中黑球,那么你应该怎样瞄准?请仿照图3画出白球的运动的路线图.
③请利用轴对称解决下面问题:
如图4,在正方形ABCD中,AB=4cm,点P是AC上一动点,E是DC的中点,PD+PE的最小值为
 
cm.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

解决数学问题时经常用到平移.如图,要在一段水平宽为8米,高为4米的阶梯上铺地毯,需要购买多长的地毯?我们可以把所有水平线段向下平移,竖直方向线段向右平移.得到所需地毯长度为8米+4米=12米.请你按照这个思路解决下面问题:
如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图2中阴影部分),余下的部分种草坪,要使草坪的面积为540m2,求道路的宽.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在正方形ABCD中,∠ECF的两边分别交边AB、AD于点E、F,且∠ECF=45°.

(1)①求证:BE+DF=EF;
②运用①的结论解决下面问题:如图2,在直角梯形ABCF中,AF∥BC(BC>AF),∠B=90°,AB=BC,E是AB上一点,且∠FCE=45°,BE=1.5,EF=2.5,求梯形ABCF的面积;
(2)在图1中,对角线AC、BD相交于点O,BD与CF分别交于点N,连接EN得到图3.当∠ECF绕点C旋转时,△ECN是什么特殊的三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面材料:
镜面对称:镜前的物体与其在镜中的像关于镜面对称
①如果有一个用火柴摆出的等式,而你从镜子中看见的是如下式子:

那么你能立即对这个等式的正确性做出判断吗?
不正确
不正确
(填“正确”或“不正确”)
②如图(1),镜前有黑、白两球,如果你用白球瞄准黑球在镜中的像,击出的白球就能经镜面反弹击中黑球.
如果你有两面互相垂直的镜子,你想让击出的白球先后经两个镜面反弹,然后仍能击中黑球,那么你应该怎样瞄准?请仿照图(1)画出图(2)中白球的运动的路线图.
③请利用轴对称解决下面问题:
如图(3)在Rt△ABC中,AB=BC=4cm,E是BC的中点,点P是AC上一动点,则△PBE的周长最小值为
2
5
+2
2
5
+2
cm.(不必写理由)

查看答案和解析>>

同步练习册答案