精英家教网 > 初中数学 > 题目详情

如图,D为AB边上一点,DE∥BC交AC于点E,已知DE:BC=4:7,则AD:DB等于


  1. A.
    4:7
  2. B.
    4:3
  3. C.
    3:7
  4. D.
    3:4
B
分析:由于DE:BC=4:7,DE∥BC,根据平行线分线段成比例定理可得AD:AB=4:7,那么易求AD:BD=4:3.
解答:∵DE:BC=4:7,DE∥BC,
∴AD:AB=4:7,
∴AD=AB,
∴BD=AB,
∴AD:BD=4:3,
故选B.
点评:本题考查了平行线分线段成比例定理,解题的关键是找出对应线段.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC为等边三角形,AB=6,动点O在△ABC的边上从点A出发沿着A→C→B→A的路线匀速运动一周,速度为1个长度单位每秒,以O为圆心、
3
为半径的圆在运动过程中与△ABC的边第二次相切时是出发后第
 
秒.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•葫芦岛)△ABC中,BC=AC=5,AB=8,CD为AB边上的高,如图1,A在原点处,点B在y轴正半轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC在平面上滑动.如图2,设运动时间表为t秒,当B到达原点时停止运动.
(1)当t=0时,求点C的坐标;
(2)当t=4时,求OD的长及∠BAO的大小;
(3)求从t=0到t=4这一时段点D运动路线的长;
(4)当以点C为圆心,CA为半径的圆与坐标轴相切时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•漳州)(1)问题探究
数学课上,李老师给出以下命题,要求加以证明.
如图1,在△ABC中,M为BC的中点,且MA=
12
BC,求证∠BAC=90°.
同学们经过思考、讨论、交流,得到以下证明思路:
思路一 直接利用等腰三角形性质和三角形内角和定理…
思路二 延长AM到D使DM=MA,连接DB,DC,利用矩形的知识…
思路三 以BC为直径作圆,利用圆的知识…
思路四…
请选择一种方法写出完整的证明过程;
(2)结论应用
李老师要求同学们很好地理解(1)中命题的条件和结论,并直接运用(1)命题的结论完成以下两道题:
①如图2,线段AB经过圆心O,交⊙O于点A,C,点D在⊙O上,且∠DAB=30°,OA=a,OB=2a,求证:直线BD是⊙0的切线;
②如图3,△ABC中,M为BC的中点,BD⊥AC于D,E在AB边上,且EM=DM,连接DE,CE,如果∠A=60°,请求出△ADE与△ABC面积的比值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广陵区二模)如图,面积为39的直角梯形OABC的直角顶点C在x轴上,点C坐标为(8
2
,0),AB=5
2
,点D是AB边上的一点,且AD:BD=2:3.有一45°的角的顶点E在x轴上运动,角的一边过点D,角的另一边与直线OA交于点F(点D、E、F按顺时针排列),连接DF.设CE=x,OF=y.
(1)求点D的坐标及∠AOC的度数;
(2)若点E在x轴正半轴上运动,求y与x的函数关系式;
(3)在点E的运动过程中,是否存在某一时刻,使得△DEF成为等腰三角形?若存在,请求出所有符合条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,AC=8cm,BC=6cm;在△ABE中,DE为AB边上的高,DE=12cm,△ABE的面积S=60cm2
(1)求出AB边的长;
(2)你能求出∠C的度数吗?请试一试.

查看答案和解析>>

同步练习册答案