精英家教网 > 初中数学 > 题目详情
(2012•德阳模拟)如图,在Rt△ABC中,∠ABC=90°,D是AC的中点,⊙O经过A、B、D三点,CB的延长线交⊙O于点E.
(1)求证:AE=CE;
(2)若EF与⊙O相切于点E,交AC的延长线于点F,且CD=CF=2cm,求⊙O的直径;
(3)若EF与⊙O相切于点E,点C在线段FD上,且CF:CD=2:1,求sin∠CAB.
分析:(1)连接DE,根据∠ABC=90°可知:AE为⊙O的直径,可得∠ADE=90°,结合点D是AC中点,可得出ED是AC的中垂线,从而可证得结论;
(2)根据△ADE∽△AEF,可将AE解出,即⊙O的直径求出;
(3)根据等角代换得出∠CAB=∠DEA,然后根据CF:CD=2:1,可得AC=CF,继而根据斜边中线等于斜边一半得出CE=BE=CF=AC,在RT△ADE中,求出sin∠DEA即可得出答案.
解答:证明:(1)连接DE,
∵∠ABC=90°,
∴∠ABE=90°,
∴AE是⊙O直径
∴∠ADE=90°,即DE⊥AC,
又∵D是AC的中点,
∴DE是AC的垂直平分线,
∴AE=CE;
(2)在△ADE和△EFA中,
∠ADE=∠AEF=90°
∠DAE=∠EAF

故可得△ADE∽△AEF,
从而
AE
AF
=
AD
AE
,即
AE
6
=
2
AE

解得:AE=2
3
cm;
即⊙O的直径为2
3
cm.
(3)∵∠CAB+∠ACB=90°,∠DEA+∠DAE=90°,∠DAE=∠ACB,
∴∠CAB=∠DEA,
∵CF:CD=2:1,点D是AC中点,
∴CF=2CD,AC=2CD,
∴AE=CE=AC=CF(斜边中线等于斜边一半)=2CD,
在RT△ADE中,sin∠DEA=
AD
AE
=
CD
2CD
=
1
2

故可得sin∠CAB=sin∠DEA=
1
2
点评:本题主要考查圆周角定理,切线的性质及相似三角形判定及性质,属于圆类题目的综合题,难度较大,解答本题的关键是熟练各个基础知识的内容,并能准确运用,大综合题都是对小知识点组合的考察,因此需要我们将所学的知识融会贯通.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•德阳模拟)把抛物线解析式y=
1
2
x2+x-
5
2
通过配方后得到的解析式是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•德阳模拟)如图,在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连接ED并延长到点F,使DF=DE,连接FC,若∠B=70°,则∠F的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•德阳模拟)如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•德阳模拟)化简:
1
x-1
+
2
1-x2
的结果是
1
x+1
1
x+1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•德阳模拟)
12
+|-
3
|-(2-3
3
)0+(
1
2
)-1-3tan60°

查看答案和解析>>

同步练习册答案